Skip to main content

Advertisement

Log in

Progress and Challenges in PEGylated Proteins Downstream Processing: A Review of the Last 8 Years

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

PEGylation is a well-known process in the bio-pharmaceutical industry mainly due to its great performance in increasing blood circulation half-life of peptides and proteins for health purposes. More than 40 years have been devoted to the study of derived products from PEGylation reaction [native, mono-, di-, multi- PEGylated proteins and unreacted poly(ethylene glycol) (PEG)]. Despite the lack of selectivity and randomness of PEG chains attachment have been overcome by site-specific PEGylation, several drugs that are currently in the market are obtained by means of random PEGylation. In the context of downstream processing, separation of mono-PEGylated forms and their isomers is still a challenge. The growing demand of PEGylated drugs in the pharmaceutical industry requires simple, robust, cost effective and efficient methods for the purification process. The aim of this review is to provide an updated revision along the last 8 years of the methods for the fractionation of PEGylated proteins relative to other contaminant proteins, n-PEGylated forms and their isomers. Chromatographic methods including size exclusion, ion exchange, reversed phase HPLC and affinity have been enlisted. Non-chromatographic complementary techniques such as aqueous two-phase systems and electrophoresis also have been included in this compilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M, Hamachi M, Yoshimoto N et al (2010) Interaction mechanism of mono-PEGylated proteins in electrostatic interaction chromatography. Biotechnol J 5:477–483. https://doi.org/10.1002/biot.201000013

    Article  CAS  PubMed  Google Scholar 

  • Asenjo JA, Andrews BA (2012) Aqueous two-phase systems for protein separation: phase separation and applications. J Chromatogr A 1238:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bailon P, Won CY (2009) PEG-modified biopharmaceuticals. Expert Opin Drug Del 6:1–16

    Article  CAS  Google Scholar 

  • Barz M, Luxenhofer R, Zentel R, Vicent MJ (2011) Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics. Polym Chem 2:1900–1918

    Article  CAS  Google Scholar 

  • Cai Y, Yue P (2011) Separation of exenatide analogue mono-PEGylated with 40 kDa polyethylene with 40 kDa polyethylene glycol by cation exchange chromatography. J Chromatogr A 1218:6953–6950

    CAS  PubMed  Google Scholar 

  • Cho YW, Park JH, Park JS et al (2007) PEGylation: camouflage of proteins, cells, and nanoparticles against recognition by the body’s defense mechanism. In: Cox SC (ed) Handbook of pharmaceutical biotechnology. Wiley, New Jersey, pp 443–461

    Chapter  Google Scholar 

  • Cisneros-Ruiz M, Mayolo-Deloisa K, Rito-Palomares M et al (2014) Separation of PEGylated variants of Ribonuclease A and apo-α-lactalbumin via reversed phase chromatography. J Chromatogr A 1360:209–216

    Article  CAS  PubMed  Google Scholar 

  • de la Torre BG, Albericio F (2019) The pharmaceutical industry in 2018. An analysis of FDA drug approvals from the perspective of molecules. Molecules 24:809

    Article  CAS  Google Scholar 

  • Dozier JK, Distefano MD (2015) Site-specific PEGylation of therapeutic proteins. Int J Mol Sci 16:25831–25864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espitia-Saloma E, Vázquez-Villegas P, Aguilar O et al (2014) Continuous aqueous two-phase systems devices for the recovery of biological products. Food Bioprod Process 92:101–112

    Article  CAS  Google Scholar 

  • Espitia-Saloma E, Vázquez-Villegas P, Rito-Palomares M et al (2016) An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: from the microdevice to a multistage bench-scale mixer-settler device. Biotechnol J 11:708–716

    Article  CAS  PubMed  Google Scholar 

  • Fee CJ, Van Alstine JM (2006) PEG-proteins: reaction engineering and separation issues. Chem Eng Sci 61:924–939

    Article  CAS  Google Scholar 

  • Fee CJ, Van Alstine JM (2011) Purification of PEGylated proteins. Method Biochem Anal 54:339–362

    Article  CAS  Google Scholar 

  • Galindo-López M, Rito-Palomares M (2012) Practical non-chromatographic strategies for the potential separation of PEGylated RNase A conjugates. J Chem Technol Biotechnol 88:49–54

    Article  CAS  Google Scholar 

  • Gaspersic J, Podgornik A, Kramberger P et al (2016) Separation of PEGylated recombinant proteins and isoforms on CIM ion exchangers. J Chromatogr B 1033–1034:91–96

    Article  CAS  Google Scholar 

  • Gerislioglu S, Adams SR, Wesdemiotis C (2018) Characterization of singly and multiply PEGylated insulin isomers by reversed-phase ultra-performance liquid chromatography interfaced with ion mobility mass spectrometry. Anal Chim Acta 1004:58–66

    Article  CAS  PubMed  Google Scholar 

  • González-Valdez J, Cueto LF, Benavides J et al (2010) Potential application of aqueous two-phase systems for the fractionation of RNase A and α-Lactalbumin from their PEGylated conjugates. J Chem Technol Biot 86:26–33

    Article  CAS  Google Scholar 

  • González-Valdez J, Rito-Palomares M, Benavides J (2012) Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for “PEGylaided” bioprocesses. Anal Bioanal Chem 403:2225–2235

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Martínez A, Aguilar O (2014) Chemical grafting for sepharose 6B and its use in the purification of PEGylated RNase A. Sep Purif Technol 136:190–198

    Article  CAS  Google Scholar 

  • Hernández-Vargas G, González-González M, Rito-Palomares MA et al (2017) Thermo-separating polymer based aqueous two-phase systems for the fractionation and recovery of PEGylated lysozyme species. Paper presented at 253rd ACS National Meeting & Exposition, San Francisco, CA, USA, American Chemical Society, Washington DC, pp. 161

  • Hirotsu T, Higashi T, Hashim IIA et al (2017) Self-assembly PEGylation retaining activity (SPRA) technology via a host-guest interaction surpassing conventional PEGylation methods of proteins. Mol Pharm 14:368–376

    Article  CAS  PubMed  Google Scholar 

  • Hong P, Koza S, Bouvier ESP (2012) A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35:2923–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyoudou K, Nishiwaka M, Kobayashi Y et al (2006) PEGylated catalase prevents metastatic tumor growth aggravated by tumor removal. Free Radic Biol Med 41:1449–1458

    Article  CAS  PubMed  Google Scholar 

  • Ingold O, Pfister D, Morbidelli M (2016) A reactive continuous chromatographic process for protein PEGylation. React Chem Eng 1:210–228

    Article  Google Scholar 

  • Isakari Y, Podgornik A, Yoshimoto N et al (2016) Monolith disk chromatography separates PEGylated protein positional isoforms within minutes at low pressure. Biotechnol J 11:100–106

    Article  CAS  PubMed  Google Scholar 

  • Jevševar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5:113–128

    Article  CAS  PubMed  Google Scholar 

  • Kusterle M, Jevševar S, Porekar VG (2008) Size of PEGylated protein conjugates studied by various methods. Acta Chim Slov 55:594–601

    CAS  Google Scholar 

  • Lee KS, Na DH (2010) Capillary electrophoretic separation of poly(ethylene glycol)-modified granulocyte-colony stimulating factor. Arch Pharm Res 33:491–495

    Article  CAS  PubMed  Google Scholar 

  • Lienqueo ME, Mahn A, Salgado JC et al (2007) Current insights in protein behaviour in hydrophobic interaction chromatography. J Chromatogr B 849:53–68

    Article  CAS  Google Scholar 

  • Maiser B, Kröner F, Dismer F et al (2012) Isoform separation and binding site determination of mono PEGylated lysozyme with pH gradient chromatography. J Chromatogr A 1268:102–108

    Article  CAS  PubMed  Google Scholar 

  • Maiser B, Baumgartner K, Dismer F et al (2015) Effect of lysozyme solid-phase PEGylation on reaction kinetics and isoform distribution. J Chromatogr B 1002:313–318

    Article  CAS  Google Scholar 

  • Mata-Gómez MA, Gallo-Villanueva RC, González-Valdez J et al (2016) Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond-shaped insulating posts. Electrophoresis 37:519–528

    Article  CAS  PubMed  Google Scholar 

  • Mayolo-Deloisa K, González-Valdez J, Guajardo-Flores D et al (2010) Current advances in the non-chromatographic fractionation and characterization of PEGylated proteins. J Chem Technol Biot 86:18–25

    Article  CAS  Google Scholar 

  • Mayolo-Deloisa K, Lienqueo ME, Andrews B et al (2012) Hydrophobic interaction chromatography for purification of monoPEGylated RNase A. J Chromatogr A 1242:11–16

    Article  CAS  PubMed  Google Scholar 

  • Mayolo-Deloisa K, González-Valdez J, Rito-Palomares M (2016) PEGylated protein separation using different hydrophobic interaction supports: conventional and monolithic supports. Biotechnol Prog 32:702–707

    Article  CAS  PubMed  Google Scholar 

  • Mejía-Manzano LA, Lienqueo ME, Escalante-Vázquez EJ et al (2017) Optimized purification of mono-PEGylated lysozyme by heparin affinity chromatography using response surface methodology. J Chem Technol Biotechnol 92:2554–2562

    Article  CAS  Google Scholar 

  • Moosman A, Christel J, Boettinger H et al (2010) Analytical and preparative separation of PEGylated lysozyme for the characterization of chromatography media. J Chromatogr A 1217:209–215

    Article  CAS  Google Scholar 

  • Morgenstern J, Wang G, Baumann P et al (2017) Model-based investigation on the mass transfer and adsorption mechanisms of mono-PEGylated lysozyme in ion-exchange chromatography. Biotechnol J 12:1–11

    Article  CAS  Google Scholar 

  • Müller E, Josic D, Schröder T et al (2010) Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins. J Chromatogr A 1217:4696–4703

    Article  CAS  PubMed  Google Scholar 

  • Neves CMSS, Sousa RCS, Pereira MM, Freire MG, Coutinho JAP (2019) Understanding the effect of ionic liquids as adjuvants in the partition of biomolecules in aqueous two-phase systems formed by polymers and weak salting-out agents. Biochem Eng J 141:239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen NT, Lee JS, Yun S et al (2016) Separation of mono- and di-PEGylate of exenatide and resolution of positional isomers of mono-PEGylates by preparative ion exchange chromatography. J Chromatogr A 1457:88–96

    Article  CAS  PubMed  Google Scholar 

  • Oerkenyi R, Eles J, Janos F et al (2017) Continuous synthesis and purification by coupling a multistep flow reaction with centrifugal partition chromatography. Angew Chem Int Ed 56:8742–8745

    Article  CAS  Google Scholar 

  • Park EJ, Hee Na D (2016) Characterization of the reversed-phase chromatographic behavior of PEGylated peptides based on the poly (ethylene glycol) dispersity. Anal Chem 88:10848–10853

    Article  CAS  PubMed  Google Scholar 

  • Patel B, Kirkwood AA, Dey A et al (2017) Pegylated-asparaginase during induction therapy for adult acute lymphoblastic leukaemia: toxicity data from the UKALL 14 trial. Leukemia 31:58–64

    Article  CAS  PubMed  Google Scholar 

  • Payne RW, Murphy BM, Cornell Manning M (2011) Product development issues for PEGylated proteins. Pharm Dev Technol 16:423–440

    Article  CAS  PubMed  Google Scholar 

  • Persson J, Johansson HO, Galaev I et al (2000) Aqueous polymer two-phase systems formed by new thermoseparating polymers. Bioseparation 9:105–116

    Article  CAS  PubMed  Google Scholar 

  • Pfister D, Morbidelli M (2016) Integrated process for high conversion and high yield protein PEGylation. Biotechnol Bioeng 113:1711–1718

    Article  CAS  PubMed  Google Scholar 

  • Pfister D, Ingold O, Morbidelli M (2016) Model-based development of an on-column PEGylation process. React Chem Eng 1:204–217

    Article  CAS  Google Scholar 

  • Qin X, Li J, Li Y et al (2017) Isoform separation and structural identification of monoPEGylated recombinant human growth hormone (PEG-rhGH) with pH gradient chromatography. J Chromatogr B 1044–1045:2016–2213

    Google Scholar 

  • Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteom 74:1829–1841

    Article  CAS  Google Scholar 

  • Ramirez-Paz J, Saxena M, Delinois LJ et al (2018) Site-specific PEGylation crosslinking of L-asparaginase subunits to improve its therapeutic efficiency. bioRxiv 317040

  • Rebolj K, Pahovnik D, Žagar E (2012) Characterization of a protein conjugate using an asymmetrical-flow field-flow fractionation and a size exclusion chromatography with multi-detection system. Anal Chem 84:7374–7383

    Article  CAS  PubMed  Google Scholar 

  • Reichel C (2012) SARCOSYL-PAGE: a new electrophoretic method for the separation and immunological detection of PEGylated proteins. In: Kurien BT, Scofield RH (eds) Protein electrophoresis methods in molecular biology (methods and protocols). Humana Press, New Jersey, pp 65–79

    Chapter  Google Scholar 

  • Rosa PA, Azevedo AM, Sommerfeld S et al (2013) Continuous purification of antibodies from cell culture supernatant with aqueous two-phase systems: from concept to process. Biotechnol J 8:352–362

    Article  CAS  PubMed  Google Scholar 

  • Ruanjaiken K, Zydney AL (2011) Purification of singly PEGylated α-lactalbumin using charged ultrafiltration membranes. Biotechnol Bioeng 108:822–829

    Article  CAS  Google Scholar 

  • Sakiyama-Elbert SE (2014) Incorporation of heparin into biomaterials. Acta Biomater 10:1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Santos JHPM, Carretero G, Coutinho JAP et al (2017) Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems. Green Chem 19:5800–5808

    Article  CAS  Google Scholar 

  • Santos JHPM, Torres-Obreque KM, Pastore-Meneguetti G, Panichi-Amaro B, Rangel-Yagui CO (2018) Protein PEGylation for the design of biobetters: from reaction to purification processes. Braz J Pharm Sci. https://doi.org/10.1590/s2175-97902018000001009

    Article  Google Scholar 

  • Sava G (1996) Pharmacological aspects and therapeutic applications of lysozymes. Exp Suppl 75:433–449

    CAS  Google Scholar 

  • Swierczewska M, Lee KC, Lee S (2015) What is the future of PEGylated therapies? Expert Opin Emerg Dr 20:531–536

    Article  CAS  Google Scholar 

  • Turecek PL, Bossard MJ, Shoetens F et al (2016) PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci 105:460–475

    Article  CAS  PubMed  Google Scholar 

  • Ulmer N, Pfister D, Morbidelli M (2017) Reactive separation processes for the production of PEGylated proteins. Curr Opin Colloid Interface Sci 31:86–91

    Article  CAS  Google Scholar 

  • Vázquez-Villegas P, Aguilar O (2017) Continuous aqueous two-phase system processes. In: Rito-Palomares M, Benavides J (eds) Aqueous two-phase systems for bioprocess development for the recovery of biological products. Springer, Cham, pp 141–159

    Chapter  Google Scholar 

  • Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2015) Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol 141:263–268

    Article  CAS  Google Scholar 

  • Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417

    Article  CAS  PubMed  Google Scholar 

  • Veronese FM, Pasut G (2007) ADME-Tox approaches. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry, vol V, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Wang X, Li X, Zhao J et al (2017) In situ PEGylation of recombinant hirudin on an anion exchange chromatography column. Process Biochem 55:162–171

    Article  CAS  Google Scholar 

  • Whatley H (2001) Basic principles and modes of capillary electrophoresis. In: Petersen J (ed) Clinical and forensic applications of capillary electrophoresis. Humana Press, New Jersey, pp 21–58

    Google Scholar 

  • Wu T, Li Y, Shen N et al (2018) Preparation and characterization of calcium alginate-chitosan complexes loaded with lysozyme. J Food Eng 233:109–116

    Article  CAS  Google Scholar 

  • Yeon SH, Jeon J, Um KA, Kim CY, Ahn Y (2018) Large-scale purification of unstable, water soluble secologanic acid using centrifugal partition chromatography. Phytochem Anal 29:487–492

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Yamamoto S (2012) PEGylated protein separation: challenges and opportunities. Biotechnol J 7:592–593

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Isakari Y, Ithoh D et al (2013) PEG chain length impacts yield of solid-phase protein PEGylation and efficiency of PEGylated protein separation by ion-exchange chromatography: insights of mechanistic models. Biotechnol J 8:801–810

    Article  CAS  PubMed  Google Scholar 

  • Zalipsky S (1995) Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 16:157–182

    Article  CAS  Google Scholar 

  • Zhai Y, Zhou W, Wei W et al (2012) Functional gigaporous polystyrene microspheres facilitating separation of poly (ethylene glycol)-protein conjugate. Anal Chim Acta 712:152–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Bioprocess Research Chair (0020209I13), the FEMSA Biotechnology Center and the School of Engineering and Science at Tecnológico de Monterrey for their support. Ana Mayela Ramos-de-la-Peña, would also like to thank the National Council of Science and Technology of Mexico (CONACYT) for her Postdoctoral Grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors have agreed to be named as authors on this manuscript. Any work (data, text, or theories) of others besides the authors has been properly acknowledged. The work is original and not previously published. All data are true and accurate to the knowledge of the authors.

Corresponding authors

Correspondence to Ana Mayela Ramos-de-la-Peña or Oscar Aguilar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Research Involving Human Participants and/or Animals

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-de-la-Peña, A.M., Aguilar, O. Progress and Challenges in PEGylated Proteins Downstream Processing: A Review of the Last 8 Years. Int J Pept Res Ther 26, 333–348 (2020). https://doi.org/10.1007/s10989-019-09840-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09840-4

Keywords

Navigation