Skip to main content
Log in

Synthesis of N-Peptide-6-Amino-d-Luciferin Conjugates with Optimized Fragment Condensation Strategy

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The synthesis of peptide-luciferin conjugates has a pivotal role in the development of bioluminescent detection systems that are based on the determination of protease enzyme activity. This work describes the optimized synthesis of an N-peptide-6-amino-d-luciferin conjugate (Fmoc-Gly-Pro-6-amino-d-luciferin) with a simple fragment condensation method in adequate yields. Fmoc-Gly-Pro-6-amino-d-luciferin was produced from a previously synthesized Fmoc-Gly-Pro-OH and also previously synthesized 6-amino-2-cyanobenzothiazole with an optimized method, to which conjugate cysteine was added in an also improved way. The resulting conjugate was successfully used in a bioluminescent system, in vitro, demonstrating the applicability of the method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Carpino LA, Triolo SA, Griffin GW, Herman LW, Tarr G, Sole NA, Diekmann E, El-Faham A, Ionescu D, Albericio F (1996) Innovation and Perspectives. In: Solid phase synthesis & combinatorial libraries: peptides, proteins and nucleic acids-small molecule organic chemical diversity. Collected Papers, 4th International Symposium, pp. 41–50, 1996

  • Chollet R, Ribault S (2012) Use of ATP Bioluminescence for rapid detection and enumeration of contaminants: the milliflex rapid microbiology detection and enumeration system. In Lapota D (ed) Recent advances in oceanic measurements and laboratory applications, InTech, China, pp 99–118, ISBN: 978-953-307-940-0

    Google Scholar 

  • Christiansen VJ, Jackson KW, Lee KN, Downs TD, McKee PA (2013) Targeting inhibition of fibroblast activation protein-alpha and prolyl oligopeptidase activities on cells common to metastatic tumor microenvironments. Neoplasia 15:348–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciuffreda P, Casati S, Meroni G, Santaniello E (2013) A new synthesis of dehydroluciferin [2-(6 ‘-hydroxy-2 ‘-benzothiazolyl)-thiazole-4-carboxylic acid] from 1,4-benzoquinone. Tetrahedron 69:5893–5897

    Article  CAS  Google Scholar 

  • De Saint-Hubert M, Devos E, Ibrahimi A, Debyser Z, Mortelmans L, Mottaghy FM (2012) Bioluminescence imaging of therapy response does not correlate with FDG-PET response in a mouse model of Burkitt lymphoma. Am J Nucl Med Mol Imaging 2:353–361

    PubMed  PubMed Central  Google Scholar 

  • Fontes R, Dukhovich A, Sillero A, Sillero MAG (1997) Synthesis of dehydroluciferin by firefly luciferase: effect of dehydroluciferin, coenzyme A and nucleoside triphosphates on the luminescent reaction. Biochem Bioph Res Co 237:445–450

    Article  CAS  Google Scholar 

  • Geiger R, Miska W (1991) US Patent US5035999A

  • Gryshuk AL, Perkins J, LaTour JV (2011) US Patent US20110224442A1

  • Hickson J, Ackler S, Klaubert D, Bouska J, Ellis P, Foster K, Oleksijew A, Rodriguez L, Schlessinger S, Wang B, Frost D (2010) Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate, Z-DEVD-aminoluciferin. Cell Death Diff 17:1003–1010

    Article  CAS  Google Scholar 

  • Hu H, Liu JT, Yao LP, Yin JP, Su N, Liu XQ, Cao F, Liang JM, Nie YZ, Wu KC (2012) Real-time bioluminescence and tomographic imaging of gastric cancer in a novel orthotopic mouse model. Oncol Rep 27:1937–1943

    CAS  PubMed  Google Scholar 

  • Jiang YL, Zhu Y, Moore AB, Miller K, Broome AM (2018) Biotinylated bioluminescent probe for long lasting targeted in vivo imaging of xenografted brain tumors in mice. ACS Chem Neurosci 9:100–106

    Article  CAS  PubMed  Google Scholar 

  • Katz L (1951) Antituberculous Compunds II. 2-Benzalhydrazinobenzothiazoles. J Am Chem Soc 73:4007–4010

    Article  CAS  Google Scholar 

  • Kovács AK, Hegyes P, Szebeni GJ, Nagy LI, Puskás LG, Tóth GK (2018) Synthesis of N-peptide-6-amino-d-luciferin Conjugates. Front Chem 6:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyfeler R (1994) Peptide synthesis via fragment condensation. Methods Mol Biol 35:303–316

    CAS  PubMed  Google Scholar 

  • O’Brian MA, Wood KV, Klaubert D, Daily B (2003) US Patent US20030211560A1

  • O’Brian MA, Daily WJ, Hesselberth PE, Moravec RA, Scurria MA, Klaubert DH, Bulleit RF, Wood KV (2005) Homogeneous, bioluminescent protease assays: caspase-3 as a model. J Biomol Scr 10:137–148

    Article  CAS  Google Scholar 

  • Presiado I, Erez Y, Simkovitch R, Shomer S, Gepshtein R, da Silva LP, da Silva J, Huppert D (2012) Excited-state proton transfer of firefly dehydroluciferin. J Phys Chem A 116:10770–10779

    Article  CAS  PubMed  Google Scholar 

  • Sadikot RTB, Timothy S (2005) Bioluminescence imaging. Proc Am Thorac Soc 2:537–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato A, Klaunberg B, Tolwani R (2004) In vivo bioluminescence imaging. Comp Med 54:631–634

    CAS  PubMed  Google Scholar 

  • White EH, Wörther H, Seliger HH, McElroy WD (1966) Amino analogs of firefly luciferin and biological activity thereof 1. J Am Chem Soc 88:2015–2019

    Article  CAS  Google Scholar 

  • Xu TT, Close D, Handagama W, Marr E, Sayler G, Ripp S (2016) The expanding toolbox of in vivo bioluminescent imaging. Front Oncol 6:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YM, Pullambhatla M, Laterra J, Pomper MG (2012) Influence of bioluminescence imaging dynamics by d-luciferin uptake and efflux mechanisms. Mol Imaging 11:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partly supported by the following Grants: GINOP-2.3.2-15-2016-00030 and GINOP-2.3.2-15-2016-00001 from the National Research, Development and Innovation Office (NKFI), Hungary. Gábor J. Szebeni was supported by János Bolyai Research Scholarship of the Hungarian Academy of Sciences (BO/00139/17/8).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: László G. Puskás, Investigation: Anita K. Kovács, Péter Hegyes, Gábor J. Szebeni, NMR analysis: Krisztián Bogár, Writing - original draft, review & editing: Anita K. Kovács, Supervision: Gábor K. Tóth.

Corresponding authors

Correspondence to Anita K. Kovács or Gábor K. Tóth.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 770 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, A.K., Hegyes, P., Szebeni, G.J. et al. Synthesis of N-Peptide-6-Amino-d-Luciferin Conjugates with Optimized Fragment Condensation Strategy. Int J Pept Res Ther 25, 1209–1215 (2019). https://doi.org/10.1007/s10989-018-9768-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9768-8

Keywords

Navigation