Advertisement

Target Specific Anticoagulant Peptides: A Review

  • Azeemullah A. Syed
  • Alka Mehta
Article

Abstract

Anticoagulant drugs are of crucial importance for the treatment and prophylaxis of thrombotic disorders. The use of traditional anticoagulants like heparin and warfarin is majorly associated with bleeding complications. In the quest for safer anticoagulation therapy, the interest for the isolation of novel anticoagulant compounds has shifted towards natural sources. Peptides can be considered as better alternative due to their therapeutic potential in the treatment of diseases. Peptides from hematophagous (blood-feeding) and venomous organisms have been recognized as potential anticoagulant agents. Of late, peptides derived from the hydrolysis of food proteins, including edible seaweeds, milk and seed proteins, have also shown to possess promising in vitro anticoagulant activity. To overcome the problems associated with regular anticoagulants, peptides targeting vital steps in the clotting cascade have been studied. This review focuses on anticoagulant peptides with known targets, inhibiting crucial factors in the coagulation cascade such as FXa, FXIa, FXIIa and FVIIa/TF complex, as well as peptides with unknown targets.

Keywords

Anticoagulants Peptides Thrombosis Coagulation 

Notes

Acknowledgements

The authors are grateful to the management of Vellore Institute of Technology for their encouragement and providing financial support to write this review article.

Funding

The author Azeemullah A. Syed gratefully acknowledges the financial support provided by the management of VIT.

Compliance with Ethical Standards

Conflict of interest

Azeemullah A. Syed and Alka Mehta declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ahmed I, Majeed A, Powell R (2007) Heparin induced thrombocytopenia: diagnosis and management update. Postgrad Med J 83:575–582.  https://doi.org/10.1136/pgmj.2007.059188 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-horani RA, Desai UR (2016) Factor XIa inhibitors: a review of patent literature. Expert Opin Ther Pat 26:323–345.  https://doi.org/10.1517/13543776.2016.1154045 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alquwaizani M, Buckley L, Adams C, Fanikos J (2013) Anticoagulants: a review of the pharmacology, dosing, and complications. Curr Emerg Hosp Med Rep 1:83–97.  https://doi.org/10.1007/s40138-013-0014-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amorim RCDN., Rodrigues JAG, Holanda ML et al (2011) Anticoagulant properties of a crude sulfated polysaccharide from the red marine alga Halymenia floresia (Clemente) C. Agardh. Acta Sci Biol Sci 33:255–261.  https://doi.org/10.4025/actascibiolsci.v33i3.6402 Google Scholar
  5. Bane CE Jr, Gailani D (2014) Factor XI as a target for antithrombotic therapy. Drug Discov Today 19:1454–1458.  https://doi.org/10.1016/j.drudis.2014.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bergum PW, Cruikshank A, Maki SL et al (2001) Role of zymogen and activated factor X as scaffolds for the inhibition of the blood coagulation factor VIIa-tissue factor complex by recombinant nematode anticoagulant protein c2. J Biol Chem 276:10063–10071.  https://doi.org/10.1074/jbc.M009116200 CrossRefPubMedGoogle Scholar
  7. Binymin KA, Nasher M, Patel D (2014) Warfarin-induced deep vein thrombosis. Int Med Case Rep J 7:123–125.  https://doi.org/10.2147/IMCRJ.S62100 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Borensztajn K, Spek CA (2011) Blood coagulation factor Xa as an emerging drug target. Expert Opin Ther Targets 15:341–349CrossRefPubMedGoogle Scholar
  9. Buddai SK, Toulokhonova L, Bergum PW et al (2002) Nematode anticoagulant protein c2 reveals a site on factor Xa that is important for macromolecular substrate binding to human prothrombinase. J Biol Chem 277:26689–26698.  https://doi.org/10.1074/jbc.M202507200 CrossRefPubMedGoogle Scholar
  10. Budzynski AZ (2001) Chromogenic substrates in coagulation and fibrinolytic assays. Lab Med 32:365–368CrossRefGoogle Scholar
  11. Cao P, Xie P, Wang X et al (2017) Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement Altern Med 17:93.  https://doi.org/10.1186/s12906-017-1592-8 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Capello M, Vlasuk GP, Bergum PW, Huang S, Hotez PJ (1995) Ancylostoma caninum anticoagulant peptide: a hookworm derived inhibitor of human coagulation factor Xa. Proc Natl Acad Sci USA 92:6152–6156CrossRefGoogle Scholar
  13. Cesarman-maus G, Hajjar KA (2005) Molecular mechanisms of fibrinolysis. Br J Hematol 129:307–321.  https://doi.org/10.1111/j.1365-2141.2005.05444.x CrossRefGoogle Scholar
  14. Charles RS, Padmanabhan K, Arni RV et al (2000) Structure of tick anticoagulant peptide at 1.6 Å resolution complexed with bovine pancreatic trypsin inhibitor. Protein Sci 9:265–272CrossRefGoogle Scholar
  15. Chen M, Ye X, Ming X et al (2015) A novel direct factor Xa inhibitory peptide with anti-platelet aggregation activity from Agkistrodon acutus venom hydrolysates. Sci Rep 5:10846.  https://doi.org/10.1038/srep10846 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheung RCF, Ng TB, Wong JH (2015) Marine peptides: bioactivities and applications. Mar Drugs 13:4006–4043CrossRefPubMedPubMedCentralGoogle Scholar
  17. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147.  https://doi.org/10.1111/cbdd.12055 CrossRefPubMedGoogle Scholar
  18. Dahlback B (2000) Blood coagulation. Lancet 355:1627–1632CrossRefPubMedGoogle Scholar
  19. Deng L, He Q, Kang T et al (2010) Biochemical and biophysical research communications identification of an anticoagulant peptide that inhibits both fXIa and fVIIa/tissue factor from the blood-feeding nematode Ancylostoma caninum. Biochem Biophys Res Commun 392:155–159.  https://doi.org/10.1016/j.bbrc.2009.12.177 CrossRefGoogle Scholar
  20. Emsley J, McEwan PA, Gailani D (2010) Structure and function of factor XI. Blood 115:2569–2578.  https://doi.org/10.1182/blood-2009-09-199182 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Franchini M, Mannucci PM (2016) Direct oral anticoagulants and venous thromboembolism. Eur Respir Rev 25:295–302.  https://doi.org/10.1183/16000617.0025-2016 CrossRefPubMedGoogle Scholar
  22. Gale AJ (2011) Current understanding of hemostasis. Toxicol Pathol 39:273–280.  https://doi.org/10.1177/0192623310389474 CrossRefPubMedGoogle Scholar
  23. Gan W, Deng L, Yang C et al (2009) An anticoagulant peptide from the human hookworm, Ancylostoma duodenale that inhibits coagulation factors Xa and XIa. FEBS Lett 583:1976–1980.  https://doi.org/10.1016/j.febslet.2009.05.009 CrossRefPubMedGoogle Scholar
  24. Gou M, Wang L, Liu X (2017) Anticoagulant activity of a natural protein purified from Hypomesus olidus. Nat Prod Res 31:1168–1171.  https://doi.org/10.1080/14786419.2016.1222382 CrossRefPubMedGoogle Scholar
  25. Graetz TJ, Tellor BR, Smith JR, Avidan MS (2011) Desirudin: a review of the pharmacology and clinical application for the prevention of deep vein thrombosis. Expert Rev Cardiovasc Ther 9:1101–1109CrossRefPubMedGoogle Scholar
  26. Greinacher A, Warkentin TE (2008) The direct thrombin inhibitor hirudin. Thromb Haemost 99:819–829.  https://doi.org/10.1160/TH07-11-0693 PubMedGoogle Scholar
  27. Harrison LM, Nerlinger A, Bungiro RD et al (2002) Molecular characterization of Ancylostoma inhibitors of coagulation factor Xa. J Biol Chem 277:6223–6229.  https://doi.org/10.1074/jbc.M109908200 CrossRefPubMedGoogle Scholar
  28. Harter K, Levine M, Henderson SO (2015) Anticoagulation drug therapy: a review. West J Emerg Med 16:11–17.  https://doi.org/10.5811/westjem.2014.12.22933 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hawkins D (2004) Limitations of traditional anticoagulants. Pharmacother 24:62–65CrossRefGoogle Scholar
  30. Hirsh J, Anand SS, Halperin JL, Fuster V (2001) Mechanism of action and pharmacology of unfractionated heparin. Asterioscler Thromb Vasc Biol 21:1094–1097CrossRefGoogle Scholar
  31. Indumathi P, Mehta A (2016) A novel anticoagulant peptide from the Nori hydrolysate. J Funct Foods 20:606–617.  https://doi.org/10.1016/j.jff.2015.11.016 CrossRefGoogle Scholar
  32. Jiang D, Zhan B, Mayor RS et al (2011) Molecular & biochemical parasitology Ac -AP-12, a novel factor Xa anticoagulant peptide from the esophageal glands of adult Ancylostoma caninum. Mol Biochem Parasitol 177:42–48.  https://doi.org/10.1016/j.molbiopara.2011.01.008 CrossRefPubMedGoogle Scholar
  33. Jo H, Jung W, Kim S (2008) Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus. Process Biochem 43:179–184.  https://doi.org/10.1016/j.procbio.2007.11.011 CrossRefGoogle Scholar
  34. Jung W, Kim S (2009) Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem 117:687–692.  https://doi.org/10.1016/j.foodchem.2009.04.077 CrossRefGoogle Scholar
  35. Karasudani I, Koyama T, Nakandakari S, Aniya Y (1996) Purification of anticoagulant factor from the spine venom of the crown-of-thorns starfish, Acanthaster Planci. Toxicon 34:871–879.  https://doi.org/10.1016/0041-0101(96)00042-6 CrossRefPubMedGoogle Scholar
  36. Katritsis DG, Gersh BJ, Camm AJ (2015) Anticoagulation in atrial fibrillation—current concepts. Arrhythm Electrophysiol Rev 4:100–107.  https://doi.org/10.15420/aer.2015.04.02.100 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kenne E, Renné T (2014) Factor XII: a drug target for safe interference with thrombosis and inflammation. Drug Discov Today 19:1459–1464.  https://doi.org/10.1016/j.drudis.2014.06.024 CrossRefPubMedGoogle Scholar
  38. Kenne E, Nickel KF, Long AT et al (2015) Factor XII: a novel target for safe prevention of thrombosis and inflammation. J Intern Med 278:571–585.  https://doi.org/10.1111/joim.12430 CrossRefPubMedGoogle Scholar
  39. Koh CY, Kini RM (2008) Anticoagulants from hematophagous animals. Expert Rev Hematol 1:135–139CrossRefPubMedGoogle Scholar
  40. Kong Y, Shao Y, Chen H et al (2013a) A novel factor Xa-inhibiting peptide from centipedes venom. Int J Pept Res Ther 19:303–311.  https://doi.org/10.1007/s10989-013-9353-0 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kong Y, Huang SL, Shao Y et al (2013b) Purification and characterization of a novel antithrombotic peptide from Scolopendra subspinipes Mutilans. J Ethnopharmacol 145:182–186.  https://doi.org/10.1016/j.jep.2012.10.048 CrossRefPubMedGoogle Scholar
  42. Kovalenko TA, Panteleev MA, Sveshnikova AN (2017) The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex. Bio Phys 62:291–300.  https://doi.org/10.1134/S0006350917020105 Google Scholar
  43. Koyama T, Noguchi K, Aniya Y, Sakanashi M (1998) Analysis for sites of anticoagulant action of plancinin, a new anticoagulant peptide isolated from the starfish Acanthaster planci, in the blood coagulation cascade. Gen Pharmacol 31:277–282CrossRefPubMedGoogle Scholar
  44. Leadley RJ Jr, Chi L, Porcari AR (2001) Non-hemostatic activity of coagulation factor Xa: potential implications for various diseases. Curr Opin Pharmacol 1:169–175CrossRefPubMedGoogle Scholar
  45. Lee AY, Agnelli G, Büller H et al (2001) Dose-response study of recombinant factor VIIa/tissue factor inhibitor recombinant nematode anticoagulant protein c2 in prevention of postoperative venous thromboembolism in patients undergoing total knee replacement. Circulation 104:74–78.  https://doi.org/10.1161/hc2601.091386 CrossRefPubMedGoogle Scholar
  46. Lee S, Qian Z, Kim S (2010) A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 118:96–102.  https://doi.org/10.1016/j.foodchem.2009.04.086 CrossRefGoogle Scholar
  47. Li X, Chi C, Li L, Wang B (2017) Purification and identification of antioxidant peptides from protein hydrolysate of scalloped hammerhead (Sphyrna lewini) cartilage. Mar Drugs 15:61.  https://doi.org/10.3390/md15030061 CrossRefPubMedCentralGoogle Scholar
  48. Lim-Wilby MSL, Hallenga K, Maeyer MD, Lasters I, Vlasuk GP, Brunck TK (1995) NMR structure determination of tick anticoagulant peptide (TAP). Protein Sci 4:178–186CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lopez-Exposito I, Minervini F, Amigo L, Recio I (2006) Identification of antibacterial peptides from bovine κ-Casein. J Food Prot 69:2992–2997CrossRefPubMedGoogle Scholar
  50. Lowenberg EC, Meijers JCM, Monia BP, Levi M (2010) Coagulation factor XI as a novel target for antithrombotic treatment. J Thromb Haemost 8:2349–2357CrossRefPubMedGoogle Scholar
  51. Mackman N (2009) The role of tissue factor and factor VIIa in hemostasis. Anesth Analg 108:1447–1452CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mackman N (2012) New insights into the mechanisms of venous thrombosis. J Clin Investig 122:2331–2336.  https://doi.org/10.1172/JCI60229.paralysis CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mega JL, Simon T, Paris P, De et al (2015) Novel antithrombotic agents 1 pharmacology of antithrombotic drugs: an assessment of oral antiplatelet and anticoagulant treatments. Lancet 386:281–291.  https://doi.org/10.1016/S0140-6736(15)60243-4 CrossRefPubMedGoogle Scholar
  54. Mieszczanek J, Harrison LM, Vlasuk GP, Cappello M (2004a) Anticoagulant peptides from Ancylostoma caninum are immunologically distinct and localize to separate structures within the adult hookworm. Mol Biochem Parasitol 133:319–323.  https://doi.org/10.1016/j.molbiopara.2003.10.015 CrossRefPubMedGoogle Scholar
  55. Mieszczanek J, Harrison LM, Cappello M (2004b) Ancylostoma ceylanicum anticoagulant peptide-1: role of the predicted reactive site amino acid in mediating inhibition of coagulation factors Xa and VIIa. Mol Biochem Parasitol 137:151–159.  https://doi.org/10.1016/j.molbiopara.2004.05.011 CrossRefPubMedGoogle Scholar
  56. Mohanty DP, Mohapatra S, Misra S, Sahu PS (2016) Milk derived bioactive peptides and their impact on human health—a review. Saudi J Biol Sci 23:577–583.  https://doi.org/10.1016/j.sjbs.2015.06.005 CrossRefPubMedGoogle Scholar
  57. Moons AHM, Peters RJG, Bijsterveld NR, Piek JJ, Prins MH, Vlasuk GP, Rote WE, Buller HR (2003) Recombinant nematode anticoagulant protein c2, an inhibitor of the tissue factor/factor VIIa complex, in patients undergoing elective coronary angioplasty. J Am Coll Cardiol 41:2147–2153.  https://doi.org/10.1016/S0735-1097(03)00478-9 CrossRefPubMedGoogle Scholar
  58. Mukherjee AK, Mackessy SP, Dutta S (2014) Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom. Int J Biol Macromol 67:154–162.  https://doi.org/10.1016/j.ijbiomac.2014.02.058 CrossRefPubMedGoogle Scholar
  59. Murakami MT, Weaver SE, Tulinsky A et al (2007) Intermolecular interactions and characterization of the novel factor Xa exosite involved in macromolecular recognition and inhibition: crystal structure of human Gla-domainless factor Xa complexed with the anticoagulant protein NAPc2 from the hematophagous nematode Ancylostoma caninum. J Mol Biol 366:602–610.  https://doi.org/10.1016/j.jmb.2006.11.040 CrossRefPubMedGoogle Scholar
  60. Nasri R, Nasri M (2013) Marine-derived bioactive peptides as new anticoagulant agents: a review. Curr Protein Pept Sci 14:199–204.  https://doi.org/10.2174/13892037113149990042 CrossRefPubMedGoogle Scholar
  61. Palta S, Sarao R, Palta A (2014) Overview of the coagulation system. Indian J Anaesth 58:515–523.  https://doi.org/10.4103/0019-5049.144643 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Patterson SL, LaMonte MP, Mikdashi JA et al (2006) Anticoagulation strategies for treatment of ischemic stroke and antiphospholipid syndrome: case report and review of the literature. Pharmacotherapy 26:1518–1525.  https://doi.org/10.1592/phco.26.10.1518 CrossRefPubMedGoogle Scholar
  63. Rajapakse N, Jung W, Mendis E et al (2005) A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci 76:2607–2619.  https://doi.org/10.1016/j.lfs.2004.12.010 CrossRefPubMedGoogle Scholar
  64. Raskob GE, Angchaisuksiri P, Bianco AN, Buller H et al (2014) Thrombosis: a major contributor to the global disease burden. J Thromb Haemost 12:1580–1590.  https://doi.org/10.1111/jth.12698 CrossRefGoogle Scholar
  65. Rebello SAMS., Blank HS, Rote WE et al (1997) Antithrombotic efficacy of a recombinant nematode anticoagulant peptide (rNAP5) in canine models of thrombosis after single subcutaneous administration. J Pharmacol Exp Ther 283:91–99PubMedGoogle Scholar
  66. Rebello SS, Blank HS, Lucchesi BR (2000) Antithrombotic efficacy of single subcutaneous administration of a recombinant nematode anticoagulant peptide (rNAP5) in a canine model of coronary artery. Thromb Res 98:531–540CrossRefPubMedGoogle Scholar
  67. Ren Y, Wu H, Lai F et al (2014) Isolation and identification of a novel anticoagulant peptide from enzymatic hydrolysates of scorpion (Buthus martensii Karsch) protein. Food Res Int 64:931–938.  https://doi.org/10.1016/j.foodres.2014.08.031 CrossRefGoogle Scholar
  68. Ren Y, Yang Y, Wu W et al (2016) Identification and characterization of novel anticoagulant peptide with thrombolytic effect and nutrient oligopeptides with high branched chain amino acid from Whitmania pigra protein. Amino Acids 48:2657–2670.  https://doi.org/10.1007/s00726-016-2299-8 CrossRefPubMedGoogle Scholar
  69. Renné T, Pozgajová M, Grüner S et al (2005) Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 202:271–281.  https://doi.org/10.1084/jem.20050664 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rios-steiner JL, Murakami MT, Tulinsky A, Arni RK (2007) Active and exo-site inhibition of human factor Xa: structure of des-Gla factor Xa inhibited by NAP5, a potent nematode anticoagulant protein from Ancylostoma caninum. J Mol Biol 371:774–786.  https://doi.org/10.1016/j.jmb.2007.05.042 CrossRefPubMedGoogle Scholar
  71. Rojas-Ronquillo R, Cruz-Guerrero A, Flores-Nájera A et al (2012) Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. Int Dairy J 26:147–154.  https://doi.org/10.1016/j.idairyj.2012.05.002 CrossRefGoogle Scholar
  72. Rupprecht H, Blank R (2010) Clinical pharmacology of direct and indirect factor Xa inhibitors. Drugs 70:2153–2170PubMedGoogle Scholar
  73. Sabbione AC, Scilingo A, Añón MC (2015) Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. LWT Food Sci Technol 60:171–177.  https://doi.org/10.1016/j.lwt.2014.07.015 CrossRefGoogle Scholar
  74. Secemsky EA, Kirtane A, Bangalore S et al (2016) Use and effectiveness of bivalirudin versus unfractionated heparin for percutaneous coronary intervention among patients with ST-segment elevation myocardial infarction in the United States. JACC 9:2376–2386.  https://doi.org/10.1016/j.jcin.2016.09.020 PubMedGoogle Scholar
  75. Shin SC, Ahn IH, Ahn DH et al (2017) Characterization of two antimicrobial peptides from antarctic fishes (Notothenia coriiceps and Parachaenichthys charcoti). PLoS ONE 1–12.  https://doi.org/10.1371/journal.pone.0170821
  76. Snipelisky D, Kusumoto F (2013) Current strategies to minimize the bleeding risk of warfarin. J Blood Med 4:89–99CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stanssens P, Bergumt PW, Gansemanst Y et al (1996) Anticoagulant repertoire of the hookworm Ancylostoma caninum. Proc Natl Acad Sci 93:2149–2154CrossRefGoogle Scholar
  78. Thakur R, Kumar A, Bose B et al (2014) A new peptide (Ruviprase) purified from the venom of Daboia russelii russelii shows potent anticoagulant activity via non-enzymatic inhibition of thrombin and factor Xa. Biochimie 105:149–158.  https://doi.org/10.1016/j.biochi.2014.07.006 CrossRefPubMedGoogle Scholar
  79. Umayaparvathi S, Meenakshi S, Vimalraj V et al (2014) Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed Prev Nutr 4:343–353.  https://doi.org/10.1016/j.bionut.2014.04.006 CrossRefGoogle Scholar
  80. Vlasuk GP, Rote WE (2002) Inhibition of factor VIIa/tissue factor with nematode anticoagulant protein C2. Trends Cardiovasc Med 12:325–331CrossRefPubMedGoogle Scholar
  81. Waxman L, Smith DE, Arcuri KE, Vlasuk GP (1990) Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248:593–596.  https://doi.org/10.1126/science.2333510 CrossRefPubMedGoogle Scholar
  82. Yang WG, Wang Z, Xu SY (2007) A new method for determination of antithrombotic activity of egg white protein hydrolysate by microplate reader. Chin Chem Lett 18:449–451.  https://doi.org/10.1016/j.cclet.2007.02.014 CrossRefGoogle Scholar
  83. Young G (2015) Anticoagulants in children and adolescents. Hematol Am Soc Hematol Educ Progr 1:111–116.  https://doi.org/10.1182/asheducation-2015.1.111 Google Scholar
  84. Yu L, Yang L, An W, Su X (2014) Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J Cell Biochem 711:697–711.  https://doi.org/10.1002/jcb.24711 CrossRefGoogle Scholar
  85. Zhang SB (2016) In vitro antithrombotic activities of peanut protein hydrolysates. Food Chem 202:1–8.  https://doi.org/10.1016/j.foodchem.2016.01.108 CrossRefPubMedGoogle Scholar
  86. Zhang Z, Zhang Q, Wang J et al (2010) Regioselective syntheses of sulfated porphyrans from Porphyra haitanensis and their antioxidant and anticoagulant activities in vitro. Carbohydr Polym 79:1124–1129.  https://doi.org/10.1016/j.carbpol.2009.10.055 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Integrative Biology, School of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations