Inhibitory Effect of Alloferons in Combination with Human Lymphocytes on Human Herpesvirus 1 (HHV-1) Replication In Vitro

  • Anna Majewska
  • Witold Lasek
  • Mariola Kuczer
  • Grażyna Młynarczyk


Over the past two decades there has been intense study of compounds from vertebrates, microorganisms, plants, mushrooms, marine sponges, worms, etc. as well as insects in terms of their antiviral activity. Insects produce a variety of biologically active peptides. One of them is alloferon. The in vitro and in vivo experiments demonstrate that synthetic alloferon has an immunomodulatory properties. It was reported that alloferon and its analogues (alloferon I and II) have antimicrobial properties, as well. The aim of this study was to evaluate in vitro the effect of alloferon I and II, either alone or in combination with human lymphocytes, on human herpesvirus type 1 (HHV-1) McIntyre strain replication. On the base of results we can conclude that alloferon I and II inhibit the replication of HHV-1 McIntyre strain in HEp-2 cells. Enhanced antiviral activity was observed when infected cells were treated with alloferons and unstimulated or phytohemagglutinin PHA-stimulated lymphocytes simultaneously. After application of alloferons and PHA-stimulated lymphocytes to the HHV-1 infected HEp-2 culture, the mean HHV-1 titer reduction for alloferon and II, when used at the highest dose—400 µg/mL, were 3.69 and 3.27 log10/TCID50/mL, respectively.


Alloferon Antiviral activity Herpesvirus HHV-1 Insect peptides Virus replication 



This study was funded by The Medical University of Warsaw.

Compliance with Ethical Standards

Conflicts of interest

Anna Majewska, Witold Lasek, Mariola Kuczer, Grażyna Młynarczyk confirm that this article content has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by any of the authors that should be approved by Ethics Committee.


  1. Askeland EJ, Newton MR, O’Donnell MA, Lu Y (2012) Bladder cancer immunotherapy: BCG and beyond. Adv Urol. doi: 10.1155/2012/181987 PubMedPubMedCentralGoogle Scholar
  2. Berthold N, Hoffmann R (2014) Cellular uptake of apidaecin 1b and related analogs in gram-negative bacteria reveals novel antibacterial mechanism for proline-rich antimicrobial peptides. Protein Pept Lett 21(4):391–398CrossRefPubMedGoogle Scholar
  3. Brown TJ, McCrary M, Tyring SK (2002) Antiviral agents: nonantiviral drugs. J Am Acad Dermatol 47:581–599CrossRefPubMedGoogle Scholar
  4. Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99(20):12628–12632CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cymerys J, Dzieciatkowski T, Golke A, Słońska A, Majewska A, Krzyżowska M, Bańbura MW (2013) Primary cultures of murine neurons for studying herpes simplex virus 1 infection and its inhibition by antivirals. Acta Virol 57(3):339–345PubMedGoogle Scholar
  6. De Clercq E (2011) Outlook of the antiviral drug era, now more than 50 years after description of the first antiviral drug, in antiviral drug strategies, ed E. De Clercq. Wiley, GermanyCrossRefGoogle Scholar
  7. De Clercq E (2013) Selective anti-herpesvirus agents. Antivir Chem Chemother 23(3):93–101CrossRefPubMedGoogle Scholar
  8. De Clerq E (2012) Milestones in the discovery of antiviral agents: nucleosides and nucleotides. APSB 2(6):535–548Google Scholar
  9. Fattorini L, Gennaro R, Zanetti M, Tan D, Brunori L, Giannoni F, Pardini M, Orefici G (2004) In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides 25(7):1075–1077CrossRefPubMedGoogle Scholar
  10. Hamelryck TW, Dao-Thi MH, Poortmans F, Chrispeels MJ, Wyns L, Loris R (1996) The crystallographic structure of phytohemagglutinin-L. J Biol Chem 271(34):20479–20485CrossRefPubMedGoogle Scholar
  11. Kim H, Im JP, Kim JS, Kang JS, Lee WJ (2015) Alloferon alleviates dextran sulfate sodium-induced colitis. Immune Netw 15(3):135–141CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kitazato K, Wang Y, Kobayashi N (2007) Viral infectious disease and natural products with antiviral activity. Drug Discov Ther 1(1):14–22PubMedGoogle Scholar
  13. Krawczyk E, Luczak M, Kniotek M, Majewska A, Kawecki D, Nowaczyk M (2005) Immunomodulatory activity and influence on mitotic divisions of N-benzoylphenylisoserinates of Lactarius sesquiterpenoid alcohols in vitro. Planta Med 71(9):819–824CrossRefPubMedGoogle Scholar
  14. Krawczyk E, Kniotek M, Nowaczyk M, Dzieciatkowski T, Przybylski M, Majewska A, Luczak M (2006) N-acetylphenylisoserinates of Lactarius sesquiterpenoid alcohols-cytotoxic, antiviral, antiproliferative and immunotropic activities in vitro. Planta Med 72(7):615–620CrossRefPubMedGoogle Scholar
  15. Kuczer M, Dziubasik K, Midak-Siewirska A, Zahorska R, Łuczak M, Konopińska D (2010) Studies of insect peptides alloferon, any-GS and their analogues. Synthesis and antiherpes activity. J Pept Sci 16(4):186–189PubMedGoogle Scholar
  16. Kuczer M, Czarniewska E, Rosiński G (2013a) Novel biological effects of alloferon and its selected analogues: structure–activity study. Regul Pept 183:17–22CrossRefPubMedGoogle Scholar
  17. Kuczer M, Majewska A, Zahorska R (2013b) New alloferon analogues: synthesis and antiviral properties. Chem Biol Drug Des 81(2):302–309CrossRefPubMedGoogle Scholar
  18. Lasek W, Janyst M, Wolny R, Zapała Ł, Bocian K, Drela N (2015) Immunomodulatory effects of inosine pranobex on cytokine production by human lymphocytes. Acta Pharm 65:171–180CrossRefPubMedGoogle Scholar
  19. Lee N, Bae S, Kim H, Kong JM, Kim HR, Cho BJ, Kim SJ, Seok SH, Hwang YI, Kim S, Kang JS, Lee WJ (2011) Inhibition of lytic reactivation of Kaposi’s sarcoma-associated herpesvirus by alloferon. Antivir Ther 16(1):17–26CrossRefPubMedGoogle Scholar
  20. Lei X, Limin Y, Wenjun L (2013) Distinct evolution process among type I interferon in mammals. Protein Cell 4(5):383–392CrossRefGoogle Scholar
  21. Majewska A, Lasek W, Janyst M, Mlynarczyk G (2015a) Inhibition of adenovirus multiplication by inosine pranobex and interferon-α in vitro. CEJI (in press)Google Scholar
  22. Majewska A, Mlynarczyk-Bonikowska B, Malejczyk M, Mlynarczyk G, Majewski S (2015b) Antiviral medication in sexually transmitted diseases. Part II: HIV. Mini Rev Med Chem 15(2):93–103CrossRefPubMedGoogle Scholar
  23. Majewska A, Lasek W, Janyst M, Mlynarczyk G (2016) In vitro inhibition of HHV-1 replication by inosine pranobex and interferon- α. Acta Pol Pharm Drug Res (in press)Google Scholar
  24. Miyanoshita A, Hara S, Sugiyama M, Asaoka A, Taniai K, Yukuhiro F, Yamakawa M (1996) Isolation and characterization of a new member of the insect defensin family from a beetle Allomyrina dichotoma. Biochem Biophys Res Commun 220(3):526–531CrossRefPubMedGoogle Scholar
  25. Mlynarczyk-Bonikowska B, Majewska A, Malejczyk M, Mlynarczyk G, Majewski S (2013) Antiviral medication in sexually transmitted diseases. Part I: HSV, HPV. Mini Rev Med Chem 13(13):1837–1845CrossRefPubMedGoogle Scholar
  26. Mosa C, Trizzino A, Di Marco F, D’Angelo P, Farruggia P (2014) Treatment of human papillomavirus infection with interferon alpha and ribavirin in a patient with acquired aplastic anemia. Int Inf Dis 23:25–27CrossRefGoogle Scholar
  27. Orhan IE (2014) Pharmacognosy: science of natural products in drug discovery. Bioimpacts 4(3):109–110CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pranczyk J, Jacewicz D, Wyrzykowski D, Chmurzynski L (2015) Platinum(II) and palladium(II) complex compounds as anti-cancer drugs. Methods of cytotoxicity determination. Curr Pharm Anal 10:2–9CrossRefGoogle Scholar
  29. Reed LJ, Muench HA (1938) A simple method of estimating fifty per cent endpoint. Am J Hyg 27:493–497Google Scholar
  30. Ryu MJ, Anikin V, Hong SH, Jeon H, Yu YG, Yu MH, Chernysh S, Lee C (2008) Activation of NF-kappa B by alloferon through down-regulation of antioxidant proteins and I-kappa-B-alpha. Mol Cell Biochem 313:91–102CrossRefPubMedGoogle Scholar
  31. Sagar S, Kaur M, Minneman KP (2010) Antiviral lead compounds from marine sponges. Mar Drugs 8(10):2619–2638CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sherman RA, Hall MJ, Thomas S (2000) Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 45:55–81CrossRefPubMedGoogle Scholar
  33. Slocinska M, Marciniak P, Rosinski G (2008) Insects antiviral and anticancer peptides: new leads for the future? Protein Pept Lett 15(6):578–585CrossRefPubMedGoogle Scholar
  34. Strasfeld L, Chou S (2010) Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am 24(2):413–437CrossRefPubMedPubMedCentralGoogle Scholar
  35. Upadhyay RK (2010) Animal proteins and peptides: anticancer and antimicrobial potential. J Pharm Res 3(12):3100–3108Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anna Majewska
    • 1
  • Witold Lasek
    • 2
  • Mariola Kuczer
    • 3
  • Grażyna Młynarczyk
    • 1
  1. 1.Chair and Department of Medical MicrobiologyMedical University of WarsawWarsawPoland
  2. 2.Department of Immunology, Center of Biostructure ResearchMedical University of WarsawWarsawPoland
  3. 3.Faculty of ChemistryUniversity of WroclawWroclawPoland

Personalised recommendations