Skip to main content

Advertisement

Log in

Lipopolysaccharide-Binding Motif Derived Peptides Induce Cell Membrane Damages in Human Lung Cancer and Hepatoma Cell Lines

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The LPSBD0 and LPSBD2 peptides, two β-hairpin cationic amphiphilic peptides, exhibit membrane damage and anti-proliferative activities on the A549 (lung cancer) and Hep3B (hepatoma) cell lines were characterized in this study. Light microscopy observations indicate that both peptides induce the production of debris in the cell cultures. The amount of this debris increased in a LPSBD treatment dosage-dependent manner. This debris was also observed by scanning electron microscopy and flow cytometry. As determined by confocal laser microscopy and flow cytometry, cell membrane damage led to Annexin V permeability on the two cancer cell lines used in this study. Both peptide treatments also induced apoptosis in lung and liver cancer cell lines. However, little hemolysis was observed in the hemolytic assay using rat erythrocytes after very-high-dose treatments for both peptides. These results suggest that the two peptides may have the potential to be developed as anti-cancer peptides for human hepatoma and lung cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cerón JM, Contreras-Moreno J, Puertollano E, de Cienfuegos GÁ, Puertollano MA, de Pablo MA (2010) The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides 31:1494–1503

    Article  PubMed  Google Scholar 

  • Chen KG, Sikic BI (2012) Molecular pathways: regulation and therapeutic implications of multidrug resistance. Clin Cancer Res 18:1863–1869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Chen T, Shaw C (2013) Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie 95:1784–1794

    Article  CAS  PubMed  Google Scholar 

  • Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW (2011) Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res 13:R102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang TC, Lee JF, Chen JY (2011) Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9:1995–2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, Taylor D, Yamakawa M (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30:660–668

    Article  CAS  PubMed  Google Scholar 

  • Koszałka P, Kamysz E, Wejda M, Kamysz W, Bigda J (2011) Antitumor activity of antimicrobial peptides against U937 histiocytic cell line. Acta Biochim Pol 58:111–117

    PubMed  Google Scholar 

  • Lin WJ, Chien YL, Pan CY, Lin TL, Chen JY, Chiu SJ, Hui CF (2009) Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30:283–290

    Article  CAS  PubMed  Google Scholar 

  • Lin MC, Hui CF, Chen JY, Wu JL (2013) Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 44:139–148

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Chung CP, Lin CY, Sung HH (2014) Function of an anti-lipopolysaccharide factor (ALF) isoform isolated from the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii in protecting against bacterial infection. J Invertebr Pathol 116:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Chen ZW (2010) Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis. Peptides 31:44–50

    Article  PubMed  Google Scholar 

  • Paredes-Gamero EJ, Casaes-Rodrigues RL, Moura GE, Domingues TM, Buri MV, Ferreira VH, Trindade ES, Moreno-Ortega AJ, Cano-Abad MF, Nader HB, Ferreira AT, Miranda A, Justo GZ, Tersariol IL (2012a) Cell-permeable gomesin peptide promotes cell death by intracellular Ca2+ overload. Mol Pharm 9:2686–2697

    Article  CAS  PubMed  Google Scholar 

  • Paredes-Gamero EJ, Martins MN, Cappabianco FA, Ide JS, Miranda A (2012b) Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochim Biophys Acta 1820:1062–1072

    Article  CAS  PubMed  Google Scholar 

  • Pluchino KM, Hall MD, Goldsborough AS, Callaghan R, Gottesman MM (2012) Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist Updat 15:98–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164:766–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625:190–194

    Article  CAS  PubMed  Google Scholar 

  • Slaninová J, Mlsová V, Kroupová H, Alán L, Tůmová T, Monincová L, Borovičková L, Fučík V, Ceřovský V (2012) Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33:18–26

    Article  PubMed  Google Scholar 

  • Soletti RC, del Barrio L, Daffre S, Miranda A, Borges HL, Moura-Neto V, Lopez MG, Gabilan NH (2010) Peptide gomesin triggers cell death through L-type channel calcium influx, MAPK/ERK, PKC and PI3K signaling and generation of reactive oxygen species. Chem Biol Interact 186:135–143

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Nakamura T, Morita T, Iwanaga S (1982) Limulus anti-LPS factor: an anticoagulant which inhibits the endotoxin mediated activation of Limulus coagulation system. Biochem Biophys Res Commun 105:717–723

    Article  CAS  PubMed  Google Scholar 

  • Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:967347

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Zhou Y, Li S, Li H, Tian L, Wang H, Shang D (2013a) Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci 92:1004–1014

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Tian LL, Li S, Li HB, Zhou Y, Wang H, Yang QZ, Ma LJ, Shang DJ (2013b) Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One 8:e60462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang R, Chen T, Zhou M, Wang L, Shaw C (2013c) PsT-1: a new tryptophyllin peptide from the skin secretion of Waxy Monkey Leaf Frog, Phyllomedusa sauvagei. Regul Pept 184:14–21

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang HT, Wu J, Zhang HF, Zhu QF (2006) Efflux of potassium ion is an important reason of HL-60 cells apoptosis induced by tachyplesin. Acta Pharmacol Sin 27:1367–1374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Ministry of Science and Technology, Taiwan, ROC (Project Grant No. NSC100-2324-B-031-001-CC1).

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical Standards and Informed Consent

This article does not contain any studies with human participants performed by any of the authors. All procedures performed involving in rat BCs harvest were in accordance with the ethical standards of the institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Wen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, HH., Jane, WN., Kao, WY. et al. Lipopolysaccharide-Binding Motif Derived Peptides Induce Cell Membrane Damages in Human Lung Cancer and Hepatoma Cell Lines. Int J Pept Res Ther 21, 313–324 (2015). https://doi.org/10.1007/s10989-015-9459-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9459-7

Keywords

Navigation