Expression and Identification of Porcine β-Defensin 1 in Escherichia coli and Up-Regulation by Streptococcus Infection in Porcine Tongue In Vivo

  • Jian Su
  • Zi-wei Zhang
  • Yan-hui Han
  • Shu Li
  • Shi-wen Xu


Defensins are members of a major family of antimicrobial peptides that play an important role in the innate immune response, which are of interest as potential novel pharmaceutical agents. We successfully constructed expression system of porcine β-defensin 1 (pBD-1) with his-tag in Escherichia coli Rossetta (DE3) cells and investigated the effect of Streptococcus ATCC 19714 infection on the mRNA expression of pBD-1 in porcine tongue in vivo. The results showed that active pBD-1 not to be affected by the presence of his-tag was obtained and displayed a high antimicrobial activity against Streptococcus ATCC 19714 at a concentration of 42 ± 5.2 μg/ml. The mRNA level of pBD-1 after infection in the tongue mucosa was initially changed with significant up-regulation at 3 h and reached the highest level at 6 h (about tenfold higher than 0 h), thereafter reduced to normal level at 12 h. The results indicated that pBD-1 is shown as a potent antimicrobial activity, and the expression level of pBD-1 against Streptococcus ATCC 19714 is up-regulation in the porcine tongue.


Porcine β-defensin 1 Antimicrobial peptides Fusion protein Innate immunity Streptococcus Escherichia coli 



This study was supported by Postdoctoral Settled Foundation of Heilongjiang (LBH-Q07017) and Special Foundation for Technological Innovation Research of Harbin (RC2008XK002019). The authors thank the members in the veterinary internal medicine laboratory in the College of Veterinary Medicine, Northeast Agricultural University for their help in collecting the porcine tongue mucosa samples.


  1. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984PubMedGoogle Scholar
  2. Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H et al (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965PubMedCrossRefGoogle Scholar
  3. Conlon JM, Abraham B, Galadari S, Knoop FC, Sonnevend A, Pal T (2005) Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its l- and d-lysine-substituted derivatives. Peptides 26:2104–2110PubMedCrossRefGoogle Scholar
  4. Dale BA, Fredericks LP (2005) Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 7:119–133PubMedGoogle Scholar
  5. Donoghue DJ (2003) Antibiotic residues in poultry tissues and eggs: human health concerns? Poult Sci 82:618–621PubMedGoogle Scholar
  6. Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10:1–34PubMedCrossRefGoogle Scholar
  7. Elahi S, Buchanan RM, Attah-Poku S, Townsend HG, Babiuk LA, Gerdts V (2006) The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets. Infect Immun 74:2338–2352PubMedCrossRefGoogle Scholar
  8. Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ (2006) Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine back fat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6:41PubMedCrossRefGoogle Scholar
  9. Friedrich CL, Rozek A, Patrzykat A, Hancock RE (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 276:24015–24022PubMedCrossRefGoogle Scholar
  10. Hallock KJ, Lee DK, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84:3052–3060PubMedCrossRefGoogle Scholar
  11. Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410PubMedCrossRefGoogle Scholar
  12. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557PubMedCrossRefGoogle Scholar
  13. Henzler Wildman KA, Lee DK, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42:6545–6558PubMedCrossRefGoogle Scholar
  14. Hiemstra PS, Fernie-King BA, McMichael J, Lachmann PJ, Sallenave JM (2004) Antimicrobial peptides: mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr Pharm Des 10:2891–2905PubMedCrossRefGoogle Scholar
  15. Jiang LH, Lu HR, Huang DX, Yi JB, Li LY, Lin F (2006) Expression of porcine beta-defensin 1 gene in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 22:1036–1039PubMedGoogle Scholar
  16. Jishu Shi GZ, Hua W, Christopher R, Blecha F, Tomas G (1999) Porcine epithelial b-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 67:7Google Scholar
  17. Kagan BL, Selsted ME, Ganz T, Lehrer RI (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 87:210–214PubMedCrossRefGoogle Scholar
  18. Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock RE, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31:9519–9526PubMedCrossRefGoogle Scholar
  19. Krahulec J, Hyrsova M, Pepeliaev S, Jilkova J, Cerny Z, Machalkova J (2010) High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli. Appl Microbiol Biotechnol 88:167–175PubMedCrossRefGoogle Scholar
  20. Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Investig 84:553–561PubMedCrossRefGoogle Scholar
  21. Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 137:167–173PubMedCrossRefGoogle Scholar
  22. Li JF, Zhang J, Song R, Zhang JX, Shen Y, Zhang SQ (2009) Production of a cytotoxic cationic antibacterial peptide in Escherichia coli using SUMO fusion partner. Appl Microbiol Biotechnol 84:383–388PubMedCrossRefGoogle Scholar
  23. Lipsky BA, Holroyd KJ, Zasloff M (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47:1537–1545PubMedCrossRefGoogle Scholar
  24. Liu F, Abiko Y, Nishimura M, Kusano K, Shi S, Kaku T (2001) Expression of inflammatory cytokines and beta-defensin 1 mRNAs in porcine epithelial rests of Malassez in vitro. Med Electron Microsc 34:174–178PubMedCrossRefGoogle Scholar
  25. Ma D, Liao W, Wang R, Han Z, Liu S (2009) Two novel duck antibacterial peptides, avian beta-defensins 9 and 10, with antimicrobial activity. J Microbiol Biotechnol 19:1447–1455PubMedGoogle Scholar
  26. Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368PubMedCrossRefGoogle Scholar
  27. Melo MN, Dugourd D, Castanho MA (2006) Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov 1:201–207PubMedCrossRefGoogle Scholar
  28. Niyonsaba F, Ogawa H (2005) Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents beta-defensins, cathelicidin LL-37 and lysozyme. J Dermatol Sci 40:157–168PubMedCrossRefGoogle Scholar
  29. Ouhara K, Komatsuzawa H, Shiba H, Uchida Y, Kawai T, Sayama K et al (2006) Actinobacillus actinomycetemcomitans outer membrane protein 100 triggers innate immunity and production of beta-defensin and the 18-kilodalton cationic antimicrobial protein through the fibronectin-integrin pathway in human gingival epithelial cells. Infect Immun 74:5211–5220PubMedCrossRefGoogle Scholar
  30. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257PubMedCrossRefGoogle Scholar
  31. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614PubMedCrossRefGoogle Scholar
  32. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73PubMedCrossRefGoogle Scholar
  33. Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186PubMedCrossRefGoogle Scholar
  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  35. Pomahac B, Svensjo T, Yao F, Brown H, Eriksson E (1998) Tissue engineering of skin. Crit Rev Oral Biol Med 9:333–344PubMedCrossRefGoogle Scholar
  36. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416–12423PubMedCrossRefGoogle Scholar
  37. Presland RB, Dale BA (2000) Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit Rev Oral Biol Med 11:383–408PubMedCrossRefGoogle Scholar
  38. Rao XC, Li S, Hu JC, Jin XL, Hu XM, Huang JJ et al (2004) A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expr Purif 36:11–18PubMedCrossRefGoogle Scholar
  39. Roe MT, Pillai SD (2003) Monitoring and identifying antibiotic resistance mechanisms in bacteria. Poult Sci 82:622–626PubMedGoogle Scholar
  40. Sang Y, Patil AA, Zhang G, Ross CR, Blecha F (2006) Bioinformatic and expression analysis of novel porcine beta-defensins. Mamm Genome 17:332–339PubMedCrossRefGoogle Scholar
  41. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91–96PubMedCrossRefGoogle Scholar
  42. Sugiarto H, Yu PL (2004) Avian antimicrobial peptides: the defense role of beta-defensins. Biochem Biophys Res Commun 323:721–727PubMedCrossRefGoogle Scholar
  43. Taguchi Y, Imai H (2006) Expression of beta-defensin-2 in human gingival epithelial cells in response to challenge with Porphyromonas gingivalis in vitro. J Periodontal Res 41:334–339PubMedCrossRefGoogle Scholar
  44. Veldhuizen EJA, van Dijk A, Tersteeg MHG, Kalkhove SIC, van der Meulen J, Niewold TA, Haagsman HP (2006) Expression of β-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection. Mol Immunol 44:8Google Scholar
  45. Veldhuizen EJ, Koomen I, Ultee T, van Dijk A, Haagsman HP (2009) Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line. Vet Microbiol 136:69–75PubMedCrossRefGoogle Scholar
  46. Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242PubMedCrossRefGoogle Scholar
  47. Wu Z, Ericksen B, Tucker K, Lubkowski J, Lu W (2004) Synthesis and characterization of human alpha-defensins 4-6. J Pept Res 64:118–125PubMedCrossRefGoogle Scholar
  48. Xu Z, Chen H, Yin X, Xu N, Cen P (2005) High-level expression of soluble human beta-defensin-2 fused with green fluorescent protein in Escherichia coli cell-free system. Appl Biochem Biotechnol 127:53–62PubMedCrossRefGoogle Scholar
  49. Xu Z, Peng L, Zhong Z, Fang X, Cen P (2006) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol Prog 22:382–386PubMedCrossRefGoogle Scholar
  50. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485PubMedCrossRefGoogle Scholar
  51. Zhang G, Hiraiwa H, Yasue H, Wu H, Ross CR, Troyer D et al (1999) Cloning and characterization of the gene for a new epithelial beta-defensin. Genomic structure, chromosomal localization, and evidence for its constitutive expression. J Biol Chem 274:24031–24037PubMedCrossRefGoogle Scholar
  52. Zhang L, Rozek A, Hancock RE (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276:35714–35722PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jian Su
    • 1
  • Zi-wei Zhang
    • 1
  • Yan-hui Han
    • 1
  • Shu Li
    • 1
  • Shi-wen Xu
    • 1
  1. 1.College of Veterinary MedicineNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations