Skip to main content

Advertisement

Log in

Expression and Identification of Porcine β-Defensin 1 in Escherichia coli and Up-Regulation by Streptococcus Infection in Porcine Tongue In Vivo

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Defensins are members of a major family of antimicrobial peptides that play an important role in the innate immune response, which are of interest as potential novel pharmaceutical agents. We successfully constructed expression system of porcine β-defensin 1 (pBD-1) with his-tag in Escherichia coli Rossetta (DE3) cells and investigated the effect of Streptococcus ATCC 19714 infection on the mRNA expression of pBD-1 in porcine tongue in vivo. The results showed that active pBD-1 not to be affected by the presence of his-tag was obtained and displayed a high antimicrobial activity against Streptococcus ATCC 19714 at a concentration of 42 ± 5.2 μg/ml. The mRNA level of pBD-1 after infection in the tongue mucosa was initially changed with significant up-regulation at 3 h and reached the highest level at 6 h (about tenfold higher than 0 h), thereafter reduced to normal level at 12 h. The results indicated that pBD-1 is shown as a potent antimicrobial activity, and the expression level of pBD-1 against Streptococcus ATCC 19714 is up-regulation in the porcine tongue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    PubMed  CAS  Google Scholar 

  • Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H et al (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM, Abraham B, Galadari S, Knoop FC, Sonnevend A, Pal T (2005) Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its l- and d-lysine-substituted derivatives. Peptides 26:2104–2110

    Article  PubMed  CAS  Google Scholar 

  • Dale BA, Fredericks LP (2005) Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 7:119–133

    PubMed  CAS  Google Scholar 

  • Donoghue DJ (2003) Antibiotic residues in poultry tissues and eggs: human health concerns? Poult Sci 82:618–621

    PubMed  CAS  Google Scholar 

  • Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10:1–34

    Article  PubMed  CAS  Google Scholar 

  • Elahi S, Buchanan RM, Attah-Poku S, Townsend HG, Babiuk LA, Gerdts V (2006) The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets. Infect Immun 74:2338–2352

    Article  PubMed  CAS  Google Scholar 

  • Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ (2006) Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine back fat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6:41

    Article  PubMed  Google Scholar 

  • Friedrich CL, Rozek A, Patrzykat A, Hancock RE (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 276:24015–24022

    Article  PubMed  CAS  Google Scholar 

  • Hallock KJ, Lee DK, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84:3052–3060

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Henzler Wildman KA, Lee DK, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42:6545–6558

    Article  PubMed  CAS  Google Scholar 

  • Hiemstra PS, Fernie-King BA, McMichael J, Lachmann PJ, Sallenave JM (2004) Antimicrobial peptides: mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr Pharm Des 10:2891–2905

    Article  PubMed  CAS  Google Scholar 

  • Jiang LH, Lu HR, Huang DX, Yi JB, Li LY, Lin F (2006) Expression of porcine beta-defensin 1 gene in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 22:1036–1039

    PubMed  CAS  Google Scholar 

  • Jishu Shi GZ, Hua W, Christopher R, Blecha F, Tomas G (1999) Porcine epithelial b-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 67:7

    Google Scholar 

  • Kagan BL, Selsted ME, Ganz T, Lehrer RI (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 87:210–214

    Article  PubMed  CAS  Google Scholar 

  • Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock RE, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31:9519–9526

    Article  PubMed  CAS  Google Scholar 

  • Krahulec J, Hyrsova M, Pepeliaev S, Jilkova J, Cerny Z, Machalkova J (2010) High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli. Appl Microbiol Biotechnol 88:167–175

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Investig 84:553–561

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 137:167–173

    Article  PubMed  CAS  Google Scholar 

  • Li JF, Zhang J, Song R, Zhang JX, Shen Y, Zhang SQ (2009) Production of a cytotoxic cationic antibacterial peptide in Escherichia coli using SUMO fusion partner. Appl Microbiol Biotechnol 84:383–388

    Article  PubMed  CAS  Google Scholar 

  • Lipsky BA, Holroyd KJ, Zasloff M (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47:1537–1545

    Article  PubMed  Google Scholar 

  • Liu F, Abiko Y, Nishimura M, Kusano K, Shi S, Kaku T (2001) Expression of inflammatory cytokines and beta-defensin 1 mRNAs in porcine epithelial rests of Malassez in vitro. Med Electron Microsc 34:174–178

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Liao W, Wang R, Han Z, Liu S (2009) Two novel duck antibacterial peptides, avian beta-defensins 9 and 10, with antimicrobial activity. J Microbiol Biotechnol 19:1447–1455

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  PubMed  CAS  Google Scholar 

  • Melo MN, Dugourd D, Castanho MA (2006) Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov 1:201–207

    Article  PubMed  CAS  Google Scholar 

  • Niyonsaba F, Ogawa H (2005) Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents beta-defensins, cathelicidin LL-37 and lysozyme. J Dermatol Sci 40:157–168

    Article  PubMed  CAS  Google Scholar 

  • Ouhara K, Komatsuzawa H, Shiba H, Uchida Y, Kawai T, Sayama K et al (2006) Actinobacillus actinomycetemcomitans outer membrane protein 100 triggers innate immunity and production of beta-defensin and the 18-kilodalton cationic antimicrobial protein through the fibronectin-integrin pathway in human gingival epithelial cells. Infect Immun 74:5211–5220

    Article  PubMed  CAS  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  PubMed  CAS  Google Scholar 

  • Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614

    Article  PubMed  CAS  Google Scholar 

  • Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed  Google Scholar 

  • Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pomahac B, Svensjo T, Yao F, Brown H, Eriksson E (1998) Tissue engineering of skin. Crit Rev Oral Biol Med 9:333–344

    Article  PubMed  CAS  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416–12423

    Article  PubMed  CAS  Google Scholar 

  • Presland RB, Dale BA (2000) Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit Rev Oral Biol Med 11:383–408

    Article  PubMed  CAS  Google Scholar 

  • Rao XC, Li S, Hu JC, Jin XL, Hu XM, Huang JJ et al (2004) A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expr Purif 36:11–18

    Article  PubMed  CAS  Google Scholar 

  • Roe MT, Pillai SD (2003) Monitoring and identifying antibiotic resistance mechanisms in bacteria. Poult Sci 82:622–626

    PubMed  CAS  Google Scholar 

  • Sang Y, Patil AA, Zhang G, Ross CR, Blecha F (2006) Bioinformatic and expression analysis of novel porcine beta-defensins. Mamm Genome 17:332–339

    Article  PubMed  CAS  Google Scholar 

  • Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91–96

    Article  PubMed  CAS  Google Scholar 

  • Sugiarto H, Yu PL (2004) Avian antimicrobial peptides: the defense role of beta-defensins. Biochem Biophys Res Commun 323:721–727

    Article  PubMed  CAS  Google Scholar 

  • Taguchi Y, Imai H (2006) Expression of beta-defensin-2 in human gingival epithelial cells in response to challenge with Porphyromonas gingivalis in vitro. J Periodontal Res 41:334–339

    Article  PubMed  CAS  Google Scholar 

  • Veldhuizen EJA, van Dijk A, Tersteeg MHG, Kalkhove SIC, van der Meulen J, Niewold TA, Haagsman HP (2006) Expression of β-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection. Mol Immunol 44:8

    Google Scholar 

  • Veldhuizen EJ, Koomen I, Ultee T, van Dijk A, Haagsman HP (2009) Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line. Vet Microbiol 136:69–75

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Ericksen B, Tucker K, Lubkowski J, Lu W (2004) Synthesis and characterization of human alpha-defensins 4-6. J Pept Res 64:118–125

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Chen H, Yin X, Xu N, Cen P (2005) High-level expression of soluble human beta-defensin-2 fused with green fluorescent protein in Escherichia coli cell-free system. Appl Biochem Biotechnol 127:53–62

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Peng L, Zhong Z, Fang X, Cen P (2006) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol Prog 22:382–386

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed  Google Scholar 

  • Zhang G, Hiraiwa H, Yasue H, Wu H, Ross CR, Troyer D et al (1999) Cloning and characterization of the gene for a new epithelial beta-defensin. Genomic structure, chromosomal localization, and evidence for its constitutive expression. J Biol Chem 274:24031–24037

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Rozek A, Hancock RE (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276:35714–35722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Postdoctoral Settled Foundation of Heilongjiang (LBH-Q07017) and Special Foundation for Technological Innovation Research of Harbin (RC2008XK002019). The authors thank the members in the veterinary internal medicine laboratory in the College of Veterinary Medicine, Northeast Agricultural University for their help in collecting the porcine tongue mucosa samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-wen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J., Zhang, Zw., Han, Yh. et al. Expression and Identification of Porcine β-Defensin 1 in Escherichia coli and Up-Regulation by Streptococcus Infection in Porcine Tongue In Vivo. Int J Pept Res Ther 18, 145–152 (2012). https://doi.org/10.1007/s10989-011-9287-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-011-9287-3

Keywords

Navigation