Skip to main content
Log in

Partially Folded Glycated State of Human Serum Albumin Tends to Aggregate

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The interaction of reducing carbohydrates with proteins leads to a cascade of reactions that are known as glycation or Maillard reactions that results in the formation of advanced glycation end products. We studied the impact of incubation with various sugars for 4 weeks on the behaviour of human serum albumin incubation using CD, fluorescence, UV–Vis spectrophotometry and polyacrylamide gel electrophoresis. Three weeks of incubation of human serum albumin with sugars resulted in the formation of an intermediate state with negative CD peaks at 222 and 208 nm characteristic of α-helix. The form also retained tertiary contacts but with altered tryptophan environment and high ANS binding indicative of molten globule state. Further incubation of human serum albumin for 4 weeks resulted in the formation of an intermediate form with negative CD peak at 217 nm, characteristic of β-sheet, decreased ANS fluorescence and increased thioflavin T fluorescence characteristic of an aggregated state. Prolonged exposure of human serum albumin to reducing sugars thus exerts greater deleterious effects on its structure and formation of aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

K:

Lysine

AGE:

Advanced glycation end products

HSA:

Human serum albumin

R:

Arginine

CD:

Circular dichorism

PAGE:

Polyacrylamide gel electrophoresis

Th T:

Thioflavin T

RAGE:

Receptor for AGEs

TNBS:

Trinitrobenzene sulphonate

References

  • Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, Cerami A, Vlassara H (1994) Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Nat1 Acad Sci USA 91:9441–9445

    Google Scholar 

  • Chesne S, Rondeau P, Armenta S, Bourdon E (2006) Effects of oxidative modifications induced by the glycation of bovine serum albumin on its structure and on cultured adipose cells. Biochimie 88:1467–1477

    Article  PubMed  CAS  Google Scholar 

  • Cussons PJ, Jacoby J, McKay A, Kelly SM, Price NC, Hunt JV (1997) Glucose modification of human serum albumin: a structural study. Free Radic Biol Med 22:1217–1228

    Article  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):9–23

    Article  Google Scholar 

  • Ge F, Jiang L, Liu D, Chen C (2011) Interaction between alizarin and human serum albumin by fluorescence spectroscopy. Anal Sci 27(1):79–84

    Article  PubMed  CAS  Google Scholar 

  • Guthrow CE, Morris MA, Day JF, Thorpe SR, Baynes JW (1979) Enhanced nonenzymatic glycosylation of human serum albumin in diabetes mellitus. Proc Nat1 Acad Sci USA 76(9):4258–4261

    Article  CAS  Google Scholar 

  • Haghani K, Khajeh K, Salmanian AH, Ranjbar B, Bakhtiyari S (2011) Acid-induced formation of molten globule states in the wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase and its three mutated forms: G96A, A183T and G96A/A183T. Protein J 30(2):132–137

    Article  PubMed  CAS  Google Scholar 

  • Hand M, Filova E, Kubala M, Lansky Z, Kolacna L, Vorlicek J, Trc T, Amler E (2007) Fluorescent advanced glycation end products in the detection of factual stages of cartilage degeneration. Physiol Res 56:235–242

    Google Scholar 

  • Haynes R, Osuga DT, Feeney RE (1967) Modification of amino groups in inhibitors of proteolytic enzymes. Biochemistry 6:541–547

    Article  PubMed  CAS  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  • Hu D, Qin Z, Xue B, Fink AL, Uversky VN (2008) The effect of methionine oxidation on structural properties, conformational stability, and aggregation of immunoglobulin light chain LEN. Biochemistry 47(33):8665–8677

    Article  PubMed  CAS  Google Scholar 

  • Iberg N, Fluckinger R (1986) Nonenzymatic glycosylation of albumin in vitro (Identification of multiple glycosylated sites). J Biol Chem 261:13542–13545

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leclere J, Birlouez-Aragon I (2001) The fluorescence of advanced maillard products is a good indicator of lysine damage during the maillard reaction. J Agric Food Chem 49:4682–4687

    Article  PubMed  CAS  Google Scholar 

  • LeVine H (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  PubMed  CAS  Google Scholar 

  • Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions: a kinetic and mechanistic study with N-acetylarginine, N-acetylcysteine, N-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenberg NJ, Randall AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mera K, Takeo K, Izumi M, Maruyama T, Nagai R, Otagiri M (2009) Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. J Pharm Sci 99:1614–1625

    Google Scholar 

  • Naeem A, Fazili NA (2011) Defective protein folding and aggregation as the basis of neurodegenerative diseases: the darker aspect of proteins. Cell Biochem Biophys. doi:10.1007/s12013-011-9200-x

  • Naeem A, Khan TA, Muzaffar M, Ahmad S, Saleemuddin M (2011) A partially folded state of ovalbumin at low pH tends to aggregate. Cell Biochem Biophys 59(1):29–38

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Matsumoto K, Ling X, Suzuli H, Araki T, Horiuchi S (2000) Glycoaldehyde, a reactive intermediate for advance glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49:1714–1723

    Article  PubMed  CAS  Google Scholar 

  • Prasanna Kumari NK, Jagannadham MV (2011) SDS induced molten globule state of heynein; a new thiol protease: evidence of domains and their sequential unfolding. Colloid Surf B Biointerfaces 82(2):609–615

    Article  CAS  Google Scholar 

  • Sen D, Mandal DK (2011) Pea lectin unfolding reveals a unique molten globule fragment chain. Biochimie 93(3):409–417

    Article  PubMed  CAS  Google Scholar 

  • Sjodin T, Hansson R, Sjoholm I (1977) Isolation and identification of a trypsin-resistant fragment of human serum albumin with bilirubin- and drug-binding properties. Biochim Biophys Acta 494:61–75

    PubMed  CAS  Google Scholar 

  • Sjoholm I, Ljungstedt I (1973) Studies on the tryptophan and drug-binding properties of human serum albumin fragments by affinity chromatography and circular dichroism measurements. J Biol Chem 248:8434–8441

    PubMed  CAS  Google Scholar 

  • Sunde M, Blake CCF (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159

    Article  PubMed  CAS  Google Scholar 

  • Takatsy A, Boddi K, Nagy L, Nagy G, Szabo S, Marko L, Wittmann I, Ohmacht R, Ringer T, Bonn GK, Gjerde D, Szabo Z (2009) Enrichment of Amadori products derived from the nonenzymatic glycation of proteins using microscale boronate affinity chromatography. Anal Biochem 393:8–22

    Article  PubMed  CAS  Google Scholar 

  • Tseng JY, Ghazaryan AA, Lo W, Chen YF, Hovhannisyan V, Chen SJ, Tan HY, Dong CY (2011) Multiphoton spectral microscopy for imaging and quantification of tissue glycation. Biomed Opt Express 2(2):218–230

    Article  CAS  Google Scholar 

  • Uversky VN, Narizhneva NV, Ivanova TV, Tomashevski AY (1997) Rigidity of human α-fetoprotein tertiary structure is under ligand control. Biochemistry 36:13638–13645

    Article  PubMed  CAS  Google Scholar 

  • Valencia JV, Weldon SC, Quinn D, Kiers GH, Degroot J, TeKoppele JM, Huges TE (2004) Advanced glycation end products: biochemical characterization and formation kinetics. Anal Biochem 324:68–78

    Article  PubMed  CAS  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end product contribute to amyloidosis in Alzheimer disease. Proc Nat1 Acad Sci USA 91:4766–4770

    Google Scholar 

  • Wang Y, King JA, Alvardo MR, Kelly JW, Dobson CM (2010) Cataract as a protein-aggregation disease. In: Protein misfolding diseases: current and emerging principles and therapies. John Wiley & Sons Inc., pp 487–515

  • Westwood ME, Thornalley PJ (1995) Molecular characteristics of methylglyoxal-modified and human serum albumins. Comparison with glucose-derived advanced glycation endproducts-modified serum albumins. J Protein Chem 14:359–372

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Wan O, Wan C, Kenny KK (2010) New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease. Biochim Biophys Acta Mol Bas Dis 1802(11):935–941

    CAS  Google Scholar 

  • Yamamoto Y, Sakata N, Meng J, Sakamoto M, Noma A, Maeda I, Okamoto K, Takebayashi S (2002) Possible involvement of increased glycooxidation and lipid peroxidation of elastin in aethrogenesis in haemodialysis patients. Nephrol Dial Transplant 17:630–636

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y, Ejiri Y, Tanaka K (2002) Glycation by ascorbic acid causes loss of activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and its increased susceptibility to proteases. Plant Cell Physiol 43(11):1334–1341

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhao J, Xiao H, Zhang D, Li G (2011) Study of hemoglobin and human serum albumin glycation with electrochemical techniques. Electroanalysis 23(2):463–468

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Department of Science and Technology, New Delhi in the form of project (SR/FT/LS-087/2007) and CSIR in the form of project No. 37(1365)/09/EMR-II is gratefully acknowledged. The authors are highly thankful for the facilities obtained at AMU Aligarh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aabgeena Naeem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, T.A., Saleemuddin, M. & Naeem, A. Partially Folded Glycated State of Human Serum Albumin Tends to Aggregate. Int J Pept Res Ther 17, 271 (2011). https://doi.org/10.1007/s10989-011-9267-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-011-9267-7

Keywords

Navigation