Methods for Enhancing Ring Closing Metathesis Yield in Peptides: Synthesis of a Dicarba Human Growth Hormone Fragment

  • Bianca J. van Lierop
  • Amanda N. Whelan
  • Sofianos Andrikopoulos
  • Roger J. Mulder
  • W. Roy Jackson
  • Andrea J. Robinson


Ruthenium-alkylidene catalysed ring closing metathesis (RCM) provides a convenient method for the synthesis of cyclic dicarba peptide analogues. Sequences devoid of turn-inducing residues, however, can often fail to cyclise. A combination of pseudoproline (ΨPro) insertion and microwave irradiation can be used to enhance RCM yield in these problematic sequences. This strategy is illustrated in the synthesis of a dicarba human growth hormone (hGH) fragment. The structural changes associated with cystine to dicarba replacement were found to change the metabolic profile of the peptide.


Anti-obesity AOD9604 Cyclic peptides Dicarba peptides Ring closing metathesis (RCM) Microwave irradiation Pseudoproline (ΨPro) residues 



The authors acknowledge the provision of an Australian Postgraduate Research Award (to B.J.v.L. and A.N.W.), AINSE Post Graduate Research Award (to B.J.v.L. and A.N.W.) and CSIRO Postgraduate Scholarship (to A.N.W.). We also thank the Australian Research Council and Circardian Technologies Ltd. for financial assistance.

Supplementary material

10989_2010_9215_MOESM1_ESM.pdf (36 kb)
Supplementary material 1 (PDF 35 kb)


  1. Armishaw CJ, Daly NL, Nevin ST, Adams DJ, Craik DJ, Alewood PF (2006) α-Selenoconotoxins, a new class of potent α7 neuronal nicotinic receptor agonists. J Biol Chem 281:14136–14143CrossRefPubMedGoogle Scholar
  2. Barth T, Servitova L (1975) Metabolic stability of some oxytocin analogues in homogenates of rat and kidney liver. Collect Czech Chem Commun 40:215–217Google Scholar
  3. Brik A (2008) Metathesis in peptides and petiodomimetics. Adv Synth Catal 350:1661–1675CrossRefGoogle Scholar
  4. Craik DJ (2006) Seemless proteins tie up their loose ends. Science 311:1563–1564CrossRefPubMedGoogle Scholar
  5. Dumy P, Keller M, Ryan DE, Rohwedder B, Wöhr T, Mutter M (1997) Pseudo-prolines as a molecular hinge: reversible induction of cis amide bonds into peptide backbones. J Am Chem Soc 119:918–925CrossRefGoogle Scholar
  6. Hossain MA, Rosengren KJ, Zhang S, Bathgate RAD, Tregear GW, van Lierop BJ, Robinson AJ, Wade JD (2009) Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity. Org Biomol Chem 7:1547–1553CrossRefPubMedGoogle Scholar
  7. Humphrey JM, Chamberlin AR (1997) Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem Rev 97:2243–2266CrossRefPubMedGoogle Scholar
  8. Illesinghe J, Guo CX, Garland R, Ahmed A, van Lierop BJ, Elaridi J, Jackson WR, Robinson AJ (2009) Metathesis assisted synthesis of cyclic peptides. Chem Commun 295–297Google Scholar
  9. Korner J, Aronne RJ (2004) Pharmacological approaches to weight reduction: therapeutic targets. J Clin Endocrinol Metab 89:2616–2621CrossRefPubMedGoogle Scholar
  10. Li P, Roller PP (2002) Cyclization strategies in peptide derived drug design. Curr Top Med Chem 2:325–341CrossRefPubMedGoogle Scholar
  11. Li P, Roller PP, Xu J (2002) Current synthetic approaches to peptide and peptiomimetics cyclisation. Curr Org Chem 6:411–440CrossRefGoogle Scholar
  12. MacRaild CA, Illesinghe J, van Lierop BJ, Townsend AL, Chebib M, Livett BG, Robinson AJ, Norton RS (2009) Structure and activity of (2,8)-dicarba-(3,12)-cystino α-ImI, an α-conotoxin containing a nonreducible cystine analogue. J Med Chem 53:755–762CrossRefGoogle Scholar
  13. Maruyama K, Nagasawa H, Suziki A (1999) 2,2′-Dipyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides. Peptides 20:881–884CrossRefPubMedGoogle Scholar
  14. Metabolic Pharmaceutical Ltd (2007) Options study for obesity drug: AOD9604. Metabolic Pharmaceutical Ltd., MelbourneGoogle Scholar
  15. Miller SJ, Grubbs RH (1995) Synthesis of conformationally restricted amino acids and peptides employing olefin metathesis. J Am Chem Soc 117:5855–5856CrossRefGoogle Scholar
  16. Miller SJ, Blackwell HE, Grubbs RH (1996) Application of ring-closing metathesis to the synthesis of rigidified amino acids and peptides. J Am Chem Soc 118:9606–9614CrossRefGoogle Scholar
  17. Moroder L, Besse D, Musiol HJ, Rudolph-Bohner S, Siedler F (1996) Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies. Biopolymers 40:207–234CrossRefPubMedGoogle Scholar
  18. Ogru E, Wilson JC, Heffernan M, Jiang W-J, Chalmers DK, Libinaki R, Ng F (2000) The conformational and biological analysis of a cyclic anti-obesity peptide from the C-terminal domain of the human growth hormone. J Pept Res 56:388–397CrossRefPubMedGoogle Scholar
  19. Robinson AJ, Elaridi J, van Lierop BJ, Mujcinovic S, Jackson WR (2007) Microwave-assisted RCM for the synthesis of carbocyclic peptides. J Pept Sci 13:280–285CrossRefPubMedGoogle Scholar
  20. Robinson AJ, van Lierop BJ, Garland RD, Teoh E, Elaridi J, Illesinghe J, Jackson WR (2009) Regioselective formation of interlocked dicarba bridges in naturally occurring cyclic peptide toxins using olefin metathesis. Chem Commun 4293–4295Google Scholar
  21. Sayyadi N, Skropeta D, Jolliffe KA (2005) N,O-isopropylidenated threonines as tools for peptide cyclisation: application to the synthesis of Mahafacyclin B. Org Lett 4:59–62Google Scholar
  22. Schmiedeberg N, Kessler H (2002) Reversible backbone protection enables combinatorial solid-phase ring-closing metathesis reaction (RCM) in peptides. Org Lett 4:59–62CrossRefPubMedGoogle Scholar
  23. Skropeta D, Jolliffe KA, Turner P (2004) Pseudoprolines as removable turn inducers: tools for the cyclization of small peptides. J Org Chem 68:8804–8808CrossRefGoogle Scholar
  24. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651CrossRefPubMedGoogle Scholar
  25. Wöhr T, Wahl G, Nefzi A, Rohwedder B, Sato T, Sun X, Mutter M (1996) Pseudoprolines as solubilizing, structure-disrupting protection technique in peptide synthesis. J Am Chem Soc 118:9218–9227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bianca J. van Lierop
    • 1
  • Amanda N. Whelan
    • 1
    • 2
  • Sofianos Andrikopoulos
    • 3
  • Roger J. Mulder
    • 2
  • W. Roy Jackson
    • 1
    • 4
  • Andrea J. Robinson
    • 1
  1. 1.School of ChemistryMonash UniversityClaytonAustralia
  2. 2.CSIRO Molecular and Health TechnologiesClayton SouthAustralia
  3. 3.Department of Medicine, Austin Health/Northern HealthHeidelberg Repatriation Hospital, The University of MelbourneHeidelbergAustralia
  4. 4.Centre for Green ChemistryMonash UniversityClaytonVICAustralia

Personalised recommendations