Skip to main content
Log in

Mapping of Apidaecin Regions Relevant for Antimicrobial Activity and Bacterial Internalization

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Apidaecins are 18–20-residue long proline-rich peptides expressed in insects as part of the innate immune system. They are very active against Gram-negative bacteria, especially Enterobacteriaceae. The C-terminal sequence PRPPHPRL is highly conserved, whereas the N-terminal region is variable. By replacing all 18 residues of apidaecin 1a and apidaecin 1b individually by alanine (Ala-scan), we have shown that single mutations in the C-terminal half of the peptides drastically reduced and mostly abolished the antibacterial activity against Escherichia coli. Conversely, substitutions in the N-terminal eight residues produced no, or only minor effects. The activity loss was correlated to the ability of apidaecin 1b and its mutants to enter Gram-negative bacteria, most likely because they no longer bind to a protein transporter. This assumed binding, however, was not inhibited by truncated apidaecin peptides added at tenfold higher concentrations. Interestingly, the antibacterial activity of full length apidaecin 1b was enhanced about four times by addition of a N-terminally truncated apidaecin peptide [11–18]-apidaecin 1b, as indicated by lower MIC-values against E. coli, although the short 5(6)-carboxyfluorescein-labeled peptide did not enter the bacteria. In contrast, the activity against the Gram-positive bacterium Micrococcus luteus was not located in the C-terminal sequence of apidaecins 1a and b, but depended mostly on the presence of all four basic residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jörnvall H (1991) Amino acid sequence of PR-39. Eur J Biochem 202:849

    Article  PubMed  CAS  Google Scholar 

  • Amato-Gauci A, Ammon A (2007) The First European Communicable Disease Epidemiological Report. European Centre for Disease prevention and Control. ISBN 978 92-9193-062-3

  • Bulet P, Hetru C, Dimarcq J-L, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Develop Comp Immun 23:329

    Article  CAS  Google Scholar 

  • Cassone M, Frith N, Vogiatzi P, Wade JD, Otvos L (2009) Induced resistance to the designer proline-rich antimicrobial peptide A3-APO does not involve changes in the intracellular target DnaK. Int J Pept Res Ther. doi:10.1007/s10989-009-9176-1

  • Casteels P, Tempst P (1994) Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Comm 199:339

    Article  PubMed  CAS  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins—antibacterial peptides from honeybees. EMBO J 8:2387

    PubMed  CAS  Google Scholar 

  • Casteels P, Ampe C, Riviere L, Damme J, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee. Eur J Biochem 187:381

    Article  PubMed  CAS  Google Scholar 

  • Casteels P, Romagnolo J, Castle M, Casteelsjosson K, Erdjumentbromage H, Tempst H (1994) Biodiversity of apidaecin-type peptide antibiotics—prospects of manipulating the antibacterial spectrum and combating acquired-resistance. J Biol Chem 269:26107

    PubMed  CAS  Google Scholar 

  • Dutta RC, Nagpal S, Salunke DM (2008) Functional mapping of apidaecin through secondary structure correlation. Int J Biochem Cell Biol 40:1005

    Article  PubMed  CAS  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142

    PubMed  CAS  Google Scholar 

  • Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Design 8:763

    Article  CAS  Google Scholar 

  • Gobbo M, Biondi L, Filira F, Gennaro R, Benincasa M, Scolaro B, Rocchi R (2002) Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues. J Med Chem 45:4494

    Article  PubMed  CAS  Google Scholar 

  • Hand WL (2000) Current challenges in antibiotic resistance. Adolesc Med 11:427

    PubMed  CAS  Google Scholar 

  • Kragol G, Hoffmann R, Chattergoon MA, Lovas S, Cudic M, Bulet P, Condie BA, Rosengren KJ, Montaner LJ, Otvos L (2002) Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur J Biochem 269:4226

    Article  PubMed  CAS  Google Scholar 

  • Li W-F, Ma G-X, Zhou X-X (2006) Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350

    Article  PubMed  CAS  Google Scholar 

  • Ludtke S, He K, Huang H (1995) Membrane thinning caused by magainin 2. Biochemistry 34:16764

    Article  PubMed  CAS  Google Scholar 

  • Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66:151

    Article  PubMed  CAS  Google Scholar 

  • Noto PB, Abbadessa G, Cassone M, Mateo GD, Agelan A, Wade JD, Szabo D, Kocsis B, Nagy K, Rozgonyi F, Otvos L Jr (2008) Alternative stabilities of a proline-rich antibacterial peptide in vitro and in vivo. Protein Sci 17:1249–1255

    Article  PubMed  CAS  Google Scholar 

  • Otvos L (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:1138

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr, Bokonyi K, Varga I, Otvos BI, Hoffmann R, Ertl HC, Wade JD, McManus AM, Craik DJ, Bulet P (2000a) Insect peptides with improved protease-resistance protect mice against bacterial infection. Prot Sci 9:742

    CAS  Google Scholar 

  • Otvos L, O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M (2000b) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150

    Article  PubMed  CAS  Google Scholar 

  • Otvos L, Wade JD, Lin F, Condie BA, Hanrieder J, Hoffmann R (2005) Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. J Med Chem 48:5349

    Article  PubMed  CAS  Google Scholar 

  • Piantavigna S, Czihal P, Mechler A, Richter M, Hoffmann R, Martin LL (2009) Cell penetrating apidaecin peptides exhibit thresholded interactions with biomimetic phospholipid membranes. Int J Pept Res Ther. doi:10.1007/s10989-009-9175-2

  • Scocchi M, Lüthy C, Decarli P, Mignogna G, Christen P, Gennaro R (2009) The proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK. Int J Pept Res Ther (this issue)

  • Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20:460

    Article  PubMed  CAS  Google Scholar 

  • Singer D, Volke D, Hoffmann R (2005) Characterization of phosphorylation-dependent anti-tau antibodies, Int. J Pept Res Ther 11:279

    Article  CAS  Google Scholar 

  • Thomasz A (1994) Multiple-antibiotic-resistant bacteria. New Engl J Med 330:1247

    Article  Google Scholar 

  • Wimley WC, Selsted ME, White SH (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 3:1361

    Article  Google Scholar 

  • Zhou XX, Li WF, Pan YJ (2008) Functional and structural characterization of apidaecin and its N-terminal and C-terminal fragments. J Pept Sci 14:697

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Peter Seibel and Mr. Ingo Schäfer for recording the confocal microscope images. This work was supported by the European Fund for Regional Structure Development (EFRE, European Union and Free State Saxony).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czihal, P., Hoffmann, R. Mapping of Apidaecin Regions Relevant for Antimicrobial Activity and Bacterial Internalization. Int J Pept Res Ther 15, 157–164 (2009). https://doi.org/10.1007/s10989-009-9178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-009-9178-z

Keywords

Navigation