Anionic Trypsin from North Pacific Krill (Euphausia pacifica): Purification and Characterization

  • Zhiqiang Wu
  • Guoliang Jiang
  • Peng Xiang
  • Honglei Xu


An anionic trypsin (TRY-EP) was purified from North Pacific krill (Euphausia pacifica) by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography. The purified enzyme was identified as a trypsin by LC-ESI-MS/MS analysis. The relative molecular mass of TRY-EP was 33 kDa, with isoelectric point of 4.5. The histidine, tryptophan, arginine, lysine, aspartic acid and glutamic acid residues were functional groups to TRY-EP. TRY-EP was activated by Ca2+ and Mg2+ and inhibited by some heavy metal ions (Zn2+, Cu2+, Pb2+ and Hg2+), organic solvents (ethanol, glycerin, DMSO and acetone) and specific trypsin inhibitors (benzamidine, CEOM, SBTI and TLCK). TRY-EP was active over a wide pH (6.0–11.0) and temperature (10–70°C) range, with optimum of pH 9.0 and 40–50°C. TRY-EP was stable between pH 6.0 and 11.0 and below 30°C. Compared with some trypsins from the Temperate and Tropical Zone organisms, TRY-EP and other trypsins from the Frigid Zone organisms have higher affinity to substrate and 2–42-fold physiological efficiency.


Euphausiapacifica Inhibitor Physiological efficiency Stability Trypsin 



This work was supported by a grant from the National High Technology Research and Development Program (863 program) of China (No. 2001AA625020) and Department of Science and Technology of Shandong Province.


  1. Ahsan MN, Watabe S (2001) Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese anchovy, Engraulis japonicus. J Protein Chem 20:49–58PubMedCrossRefGoogle Scholar
  2. Anheller JE, Hellgren L, Karlstam B, Vincent J (1989) Biochemical and biological profile of a new enzyme preparation from Antarctic krill (Esuperba) suitable for debriment of ulcerative lesions. Arch Dermatol Res 281:105–110PubMedCrossRefGoogle Scholar
  3. Asgeirsson B, Fox JW, Bjarnason JB (1989) Purification and characterization of trypsin from the poikilotherm Gadus morhua. Eur J Biochem 180:85–94PubMedCrossRefGoogle Scholar
  4. Bougatef A, Souissi N, Fakhfakh N, Ellouz-Triki Y, Nasri M (2007) Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus). Food Chem 102:343–350CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Bundy HF, Gustafson J (1973) Purification and comparative biochemistry of a protease from the starfish Pisaster giganteus. Comp Biochem Physiol B 44:241–251PubMedCrossRefGoogle Scholar
  7. Bustos RO, Romo CR, Healy MG (1999) Purification of trypsin-like enzymes from Antarctic krill processing wastewater. Process Biochem 35:327–333CrossRefGoogle Scholar
  8. Candiano G, Bruschi M, Musante L, et al (2004) Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333PubMedCrossRefGoogle Scholar
  9. Cao MJ, Osatomi K, Suzuki M, Hara K, Tachibana K, Ishihara T (2000) Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fish Sci 66:1172–1179CrossRefGoogle Scholar
  10. Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MÁ (2005) Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp Biochem Physiol B 140:91–98PubMedCrossRefGoogle Scholar
  11. Dittrich BU (1992) Life under extreme condition: aspect of evolutionary adaptation to temperature in crustacean proteases. Polar Biol 12:269–274CrossRefGoogle Scholar
  12. Dionysius DA, Hoek KS, Milne JM, Slattery SL (1993) Trypsin-like enzyme from sand crab (Portunus pelagicus): purification and characterization. J Food Sci 58:780–792CrossRefGoogle Scholar
  13. Erlanger BF, Kokousky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278PubMedCrossRefGoogle Scholar
  14. Gates B, Travis J (1969) Isolation and comparative properties of shrimp trypsin. Biochemistry 8:4483–4489PubMedCrossRefGoogle Scholar
  15. Gudmundsdóttir A, Gudmundsdottir E, Oskarsson S, Bjarnason JB, Eakin AK, Craik CS (1993) Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen. Eur J Biochem 217:1091–1097PubMedCrossRefGoogle Scholar
  16. Guizani N, Rolle RS, Marshal MR, Wei CI (1991) Isolation, purification and characterization of a trypsin from the pyloric ceca of mullet (Mugil cephalus). Comp Biochem Physiol B 98:517–521CrossRefGoogle Scholar
  17. Guyonnet V, Tluscik F, Long PL, Polanowski A, Travis J (1999) Purification and partial characterization of the pancreatic proteolytic enzymes trypsin, chymotrypsin and lastase from the chicken. J Chromato A 852:217–225CrossRefGoogle Scholar
  18. Hellgren L, Mohr V, Vincent J (1986) Cleaning with enzymes from krill. U.S. Patent 4801451, 31 Jan 1986Google Scholar
  19. Hellgren L, Mohr V, Vincent J (1990) Process of removing biological contaminants with enzymes from krill. U.S. Patent 4963491, 16 Oct 1990Google Scholar
  20. Heu MS, Kim HR, Pyeum JH (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comp Biochem Physiol B 112:557–568PubMedCrossRefGoogle Scholar
  21. Hjelmeland K, Raa J (1982) Characteristics of two trypsin type isozymes isolated from the Arctic fish capelin (Mallotus villosus). Biochem Physiol B 71:557–562CrossRefGoogle Scholar
  22. Honjo I, Kimura S, Nonaka M (1990) Purification and characterisation of trypsin-like enzyme from shrimp Penaeus indicus. Bull Jap Soc Sci Fish 56(10):1627–1634Google Scholar
  23. Jiang ST, Moody MW, Chen HC (1991) Purification and characterization of protease from digestive tract of grass shrimp (Penaeus monodon). J Food Sci 56:322–326CrossRefGoogle Scholar
  24. Johnston D, Hermans JM, Yellowlees D (1995) Isolation and characterization of a trypsin from the slipper lobster, Thenus orientalis (Lund). Arch Biochem Biophys 324(1):35–40PubMedCrossRefGoogle Scholar
  25. Kabsch W, Sander C (1983) Dictionary of protein Dondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637PubMedCrossRefGoogle Scholar
  26. Kishimura H, Hayashi K, Miyashita Y, Nonami Y (2005) Characteristics of two trypsin isozymes from the viscera of Japanese anchovy (Engraulis japonica). J Food Biochem 29:459–469CrossRefGoogle Scholar
  27. Kishimura H, Hayashi K, Miyashita Y, Nonami Y (2006a) Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem 97:65–70CrossRefGoogle Scholar
  28. Kishimura H, Tokuda Y, Klomklao S, Benjakul S, Ando S (2006b) Comparative study of enzymatic characteristics of trypsins from the pyloric ceca of yellow tail (Seriola quinqueradiata) and brown hakeling (Physiculus japonicus). J Food Biochem 30:521–534CrossRefGoogle Scholar
  29. Kishimura H, Tokuda Y, Klomklao S, Benjakul S, Ando S (2006c) Enzymatic characteristics of trypsin from pyloric ceca of spotted mackerel (Scomber australasicus). J Food Biochem 30:466–477CrossRefGoogle Scholar
  30. Kishimura H, Klomklao S, Benjakul S, Chunl BS (2007a) Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chem.  doi: 10.1016/j.foodchem.2007.05.056
  31. Kishimura H, Tokuda Y, Yabe M, Klomklao S, Benjakul S, Ando S (2007b) Trypsins from the pyloric ceca of jacopever (Sebastes schlegelii) and elkhorn sculpin (Alcichthys alcicornis): isolation and characterization. Food Chem 100:1490–1495CrossRefGoogle Scholar
  32. Klein B, Le Moullac G, Sellos D, Van Worhmount A (1996) Molecular cloning and sequence of trypsin cDNAs from Penaeus vannamei (Crustacea, Decapoda): use in assessing gene expression during the moult cycle. Int J Biochem Cell Biol 28(5):551–563PubMedCrossRefGoogle Scholar
  33. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK, Saeki H (2006a) Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp Biochem Physiol B 144:47–56PubMedCrossRefGoogle Scholar
  34. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2006b) Purification and characterization of trypsin from the spleen of tongol tuna (Thunnus tonggol). J Agric Food Chem 54:5617–5622PubMedCrossRefGoogle Scholar
  35. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) Purification and characterisation of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem 100:1580–1589CrossRefGoogle Scholar
  36. Kossiakoff AA, Chambers JL, Kay LM, Stroud RM (1977) Structure of bovine trypsinogen at 1.9 Å resolution. Biochemistry 16:654–664PubMedCrossRefGoogle Scholar
  37. Kristjansson MM (1991) Purification and characterization of trypsin from the pyloric caeca of rainbow trout (Oncorhynchus mykiss). J Agric Food Chem 39:1738–1742CrossRefGoogle Scholar
  38. Kurtovic I, Marshall SN, Simpson BK (2006) Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol B 143:432–440PubMedCrossRefGoogle Scholar
  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  40. Leiros H-KS, Willassen NP, Smalâs AO (1999) Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles 3:205–219PubMedCrossRefGoogle Scholar
  41. Liu ZY, Wang Z, Xu SY, Xu LN (2007) Two trypsin isoforms from the intestine of the grass carp (Ctenopharyngodon idellus). J Comp Physiol B 177:655–666PubMedCrossRefGoogle Scholar
  42. Lu PJ, Liu HC, Tsai IH (1990) The midgut trypsins of shrimp (Penaeus monodon): high efficiency toward native protein substrates including collagens. Biol Chem 371:851–859Google Scholar
  43. Martínez A, Olsen RL, Serra JL (1988) Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy Engraulis encrasicholus. Comp Biochem Physiol B 91:677–684PubMedCrossRefGoogle Scholar
  44. Mekkes J, Le Poole I, Das Pranab K, Bos JD, Westerhof W (1998) Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: a double blind, placebo-controlled study in a standardized animal wound model. Wound Repair Regen 6(1):50–57PubMedCrossRefGoogle Scholar
  45. Mrabet NT, Van Den Broeck A, Van Den Brande I, et al (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 31:2239–2253PubMedCrossRefGoogle Scholar
  46. Nakagawa Y, Endo Y, Taki K (2002) Contributions of heterotrophic and autotrophic prey to the diet of Euphausia pacifica Hansen in Sanriku waters off northeastern Japan. Polar Biosci 15:52–65Google Scholar
  47. Osnes KK, Mohr V (1985a) Peptide hydrolases of Antarctic krill, Euphausia superba. Comp Biochem Physiol B 82:559–606Google Scholar
  48. Osnes KK, Mohr V (1985b) On the purification and characterization of three serine-type peptide hydrolases from Antarctic krill, Euphausia superba. Comp Biochem Physiol B 82:607–619CrossRefGoogle Scholar
  49. Outzen H, Berglund GI, Smalds AO, Willassen NP (1996) Temperature and pH sensitivity of trypsins from atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol B 115:33–45PubMedCrossRefGoogle Scholar
  50. Rypniewski WR, Perrakis A, Vorgias CE, Wilson KS (1994) Evolutionary divergence and conservation of trypsin. Protein Engin 7:57–64CrossRefGoogle Scholar
  51. Sainz JC, García-Carreňo FL, Hernández-Cortés P (2004) Penaeus vannamei isotrypsins: purification and characterization. Comp Biochem Physiol B 138:155–162PubMedCrossRefGoogle Scholar
  52. Sekizaki H, Itoh K, Murakami M, Toyota E, Tanizawa K (2000) Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Comp Biochem Physiol B 127:337–346PubMedCrossRefGoogle Scholar
  53. Shevchenko A, Jensen ON, Podtelejnikov AV, et al (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two-dimensional gels. Proc Natl Acad Sci USA 93(25):14440–14445PubMedCrossRefGoogle Scholar
  54. Simpson BK, Haard NF (1984) Purification and characterization of trypsin from Greenland cod, (Gadus ogac). 1. Kinetic and thermodynamic characterization. Can J Biochem Cell Biol 62:894–900CrossRefGoogle Scholar
  55. Simpson BK, Haard NF (1985) Characterization of the trypsin fraction from cunner, Tautogolabrus adspersus. Comp Biochem Physiol B 80:475–480CrossRefGoogle Scholar
  56. Souza AAG, Amaral IPG, Espírito Santo AR, Carvalho LB, Bezerra RS (2007) Trypsin-like enzyme from intestine and pyloric caeca of spotted goatfish (Pseudupeneus maculatus). Food Chem 100:1429–1434CrossRefGoogle Scholar
  57. Stauffer CE (1989) Enzyme assay for food scientist. A.V.I. Press, New York, pp 87–89Google Scholar
  58. Suzuki T, Shibata N (1990) The utilization of Antarctic krill for human food. Food Rev Int 6:119–147CrossRefGoogle Scholar
  59. Walsh KA (1970) Trypsinogen and trypsins of various species. Meth Enzymol 19:41–63CrossRefGoogle Scholar
  60. Yoshinaka R, Suzuki T, Sato M, Ikeda S (1983) Purification and some properties of anionic trypsin from the catfish pancreas. Bull Jap Soc Sci Fish 49:207–212Google Scholar
  61. Yoshinaka R, Sato M, Suzuki T, Ikeda S (1984) Enzymatic characterization of anionic trypsin of the catfish (Parasilurus asotus). Comp Biochem Physiol B 80:475–480Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zhiqiang Wu
    • 1
  • Guoliang Jiang
    • 1
  • Peng Xiang
    • 2
  • Honglei Xu
    • 1
  1. 1.Laboratory of Zoobiology, Department of Marine Bioengineering, College of Marine Life ScienceOcean University of ChinaQingdao ShandongChina
  2. 2.Third Institute of Oceanography, State Oceanic AdministrationXiamenChina

Personalised recommendations