Chemical Synthesis of Maxadilan, a Non-mammalian Potent Vasodilatory Peptide Consisting of 61 Amino Acids with Two Disulfide Bridges, and Its Related Peptides

  • Kiyoshi Nokihara
  • Tadashi Yasuhara
  • Yoshihiro Nakata
  • Ethan A. Lerner
  • Victor Wray
Bruce Merrifield Commemorative Issue


A potent and persistent non-mammalian derived vasodilator, maxadilan (Maxa) consists of 61 amino acids with two disulfide linkages and acts as an agonist of the type I receptor of pituitary adenylate cyclase activating polypeptide (PACAP), although there is very little sequence similarity. The total chemical syntheses of Maxa, its disulfide isomers and various fragments have been performed successfully by highly efficient solid-phase peptide synthesis (SPPS). A “difficult sequence”, envisaged in the middle region of Maxa, could be overcome by improved synthesis protocols. After assembly peptides were liberated from the resin by cleavage. Peptides having disulfide(s) were purified by two steps of preparative HPLC using cation exchange followed by reverse phase columns. Purified peptides were characterized by HPLC, Edman-sequencing, amino acid analysis and mass spectrometry in addition to disulfide form determination. The peptides obtained were used for recognition studies by the melanophore assay to confirm the native disulfide form. Peptide libraries related to Maxa, produced in the present study, will be useful for the elucidation of the structural requirements of Maxa for interaction with the PACAP type 1 receptor (PAC1).


vasodilator maxadilan PAC1 receptor disulfide isomer highly efficient solid-phase synthesis difficult sequence melanophore assay 



N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]-N- methylmethanaminium hexafluorophosphate N-oxide




liquid chromatograph with on-line ion-trap mass spectrometry


matrix assisted laser desorption ionization time of flight mass spectrometry




pituitary adenylate cyclase activating polypeptide


PACAP type 1 receptor


solid-phase peptide synthesis


reverse-phase high performance liquid chromatography


benzotriazole-1-yl-oxy-tris(pyrrolidino)phosphonium hexafluorophosphate


trifluoroacetic acid





The authors thank Professor T. Kasama, Tokyo Medical and Dental University for MALDI-TOF analyses. A part of the present study was supported by a grant from the Ministry of Education, Science, and Culture, Japan.


  1. Ando, E., Nokihara K., Naruse S., Wray V. (1996) Biomed. Pept. Proteins Nucleic Acids 2, 41–46PubMedGoogle Scholar
  2. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. (1984) J. Chromat., 336, 93-104CrossRefGoogle Scholar
  3. Carpino, L. A., El-Faham, A., Minor, C. A., Albericio, F. J.: 1994, Chem. Soc., Chem. Commun., 201–203Google Scholar
  4. Carpino L. A., El-Faham A.J. (1995) Org. Chem., 60, 3561–3564CrossRefGoogle Scholar
  5. Chang J -Y., Knecht R., Braun D. G. (1981) Biochem. J. 199, 544–555Google Scholar
  6. Kimura, T.: 2004, in M. Goodman (Ed. in Chief) Houben-Weyl Methods of Organic Chemistry E22b, Georg Thieme Verlag, Stuttgart and New York, pp. 143Google Scholar
  7. Lerner E. A., Ribeiro J. M. C., Nelson J. R., Lerner M. R. (1991) J. Biol. Chem. 262, 11234–11236Google Scholar
  8. Lerner E. A., Shoemaker C. B. (1992) J Biol Chem. 267, 1062–1066PubMedGoogle Scholar
  9. Lerner M. (1994) TINS 17, 142–146PubMedGoogle Scholar
  10. Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. J. (1951) J. Biol. Chem. 193, 265–267PubMedGoogle Scholar
  11. Miyata A., Arimura A., Dahl R.R., Minamino N., Uehara A., Jiang L., Culler M.D., Coy D.H. (1989) Biochem. Biophys. Res. Commun. 164, 567–574PubMedCrossRefGoogle Scholar
  12. Miyata A., Jiang L., Dahl R. D., Kitada C., Kubo K., Fujino M., Minamino N., Arimura A. (1990) Biochem. Biophys. Res. Commun. 170, 643–648PubMedCrossRefGoogle Scholar
  13. Moro O., Lerner E. A. (1997) J. Biol. Chem. 272, 966–970PubMedCrossRefGoogle Scholar
  14. Nokihara K., Semba T. (1988) J. Amer. Chem. Soc. 110, 7847–7854CrossRefGoogle Scholar
  15. Nokihara K. (1990) Peptides 11, 185–191PubMedCrossRefGoogle Scholar
  16. Nokihara K., Morita N., Yamaguchi M., Watanabe T. (1992) Anal. Lett. 25, 513–533Google Scholar
  17. Nokihara K., Wray V., Ando E., Naruse S., Hayakawa T. (1997a) Reg. Peptides. 70, 111–120CrossRefGoogle Scholar
  18. Nokihara K., Nagawa Y., Hong S -P., Nakanishi H. (1997b) Lett Peptide Sci. 4, 141–146CrossRefGoogle Scholar
  19. Nokihara K., Naruse S., Ando E., Wei M., Ozaki T., Wray V. (1998 In Ramage R. (Ed), Peptides. Mayflower Scientific Ltd., Birmingham, UK, pp 63–66Google Scholar
  20. Nokihara, K., Yasuhara, T., Nakata, Y. and Wray, V.: 2001a in R. Epton (Ed.), Solid-Phase Synthesis and Combinatorial Chemical Libraries 2000. Mayflower Scientific Ltd., Birmingham, UK, pp. 23–28Google Scholar
  21. Nokihara K., Shimizu S., Pipkorn R., Yasuhara T., and Shioda T. (2001b) In Shioiri T. (Eds.), Peptide Science 2000: The Japanese Peptide Society, Osaka, pp 13–16Google Scholar
  22. Pereira P., Reddy V. B., Kounga K., Bello Y., Lerner E. (2002) Pigment Cell Res. 15, 461–466PubMedCrossRefGoogle Scholar
  23. Qureshi A. A., Asahina A., Ohnuma M., Tajima M., Granstein R. D., Lerner E. A. (1996) Am J Trop Med Hyg. 54, 665-671PubMedGoogle Scholar
  24. Rawlings S. R., Hezareh M. (1996) Endocrine Reviews. 17, 4–29PubMedCrossRefGoogle Scholar
  25. Wray V., Blankenfeldt W., Nokihara K., Naruse S. (1998) In Ramage, R. (Eds), Peptides, pp 921–922. Mayflower Scientific Ltd., BirminghamGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kiyoshi Nokihara
    • 1
  • Tadashi Yasuhara
    • 2
  • Yoshihiro Nakata
    • 3
  • Ethan A. Lerner
    • 4
  • Victor Wray
    • 5
  1. 1.HiPep LaboratoriesKyotoJapan
  2. 2.Tokyo University of AgricultureTokyoJapan
  3. 3.Hiroshima UniversityHiroshimaJapan
  4. 4.Massachusetts General HospitalCharlestownUSA
  5. 5.Department of Structural BiologyHelmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations