Toward the Design of Highly Efficient, Readily Accessible Peptide N-caps for the Induction of Helical Conformations

  • Richard Mimna
  • Gabriele Tuchscherer
  • Manfred Mutter
Bruce Merrifield Commemorative Issue

A series of novel peptide N-caps was designed with an emphasis on ease of synthesis and an abundance of hydrogen bond acceptors. Different scaffolds based on sugars, cyclic hydrocarbons, and amino acids are developed with a variety of hydrogen bond acceptors including esters, carboxyls, amides and a sulfonic acid. The efficient use in solid-phase peptide synthesis was demonstrated by incorporating the N-caps to a resin-bound model peptide. Their differential helix nucleating power in aqueous buffer was determined by CD studies. Increases in peptide helicity to a significant extent are observed, leading to a discussion of N-capping efficiency versus ease of synthesis. The potential of the elaborated N-caps for the reversal of β-sheet to α-helix conformations in the context of fibrillogenesis is discussed.


N-caps peptidomimetics helix nucleation switch-peptides CD studies 



This work was supported by the Swiss National Science Foundation and Debiopharm S.A., Lausanne.


  1. Aurora R., Rose G.D. (1998), Protein Sci. 7, 21–38PubMedGoogle Scholar
  2. Barazza A., Wittelsberger A., Fiori N., et al. (2005), J. Peptide Res. 65, 23–35CrossRefGoogle Scholar
  3. Barlow D. J., Thornton J. M. (1988). J. Mol. Biol. 201, 601–619PubMedCrossRefGoogle Scholar
  4. Bayer E., Mutter M. (1972). Nature 237:265–268CrossRefGoogle Scholar
  5. Beck-Sickinger A. G., Jung G. (1995). Biopolymers 37:123–142PubMedCrossRefGoogle Scholar
  6. Bernheimer A. W., Rudy B.. (1986). Biochim. Biophys. Acta 864:123–141PubMedGoogle Scholar
  7. Betnev A. F., Obukhova T. A., Budanov N. A., Kolpashchikova I. S., Betnev S. A. (1999). Russ. J. Org. Chem. 35:519–521Google Scholar
  8. Bodanszky M. (1984) Principles of Peptide Synthesis. Springer-Verlag Berlin, Heidelberg, New York, TokyoGoogle Scholar
  9. Bosques C. J., Tschampel S. M., Woods R. J., Imperiali B. (2004). J. Am. Chem. Soc. 126:8421–8425PubMedCrossRefGoogle Scholar
  10. Chen Y. H., Yang J. T., Chau K. H. (1974). Biochemistry 13:3350–3359PubMedCrossRefGoogle Scholar
  11. Ellenberger T. E., Brandl C. J., Struhl K., Harrison S. C. (1992). Cell 71:1223–1237PubMedCrossRefGoogle Scholar
  12. Fasman G. D. (1996) Circular Dichroism and the Conformational Analysis of Biomolecules. Plenum Press, New YorkGoogle Scholar
  13. Felix A. M., Heimer E. P., Wang C. T., et al. (1988). Int. J. Pep. Prot. Res. 32:441–454CrossRefGoogle Scholar
  14. Forood B., Reddy H. K., Nambiar K. P. (1994). J. Am. Chem. Soc. 116:6935–6936CrossRefGoogle Scholar
  15. Heitmann B., Job G. E., Kennedy R. J., Walker S. M., Kemp D. S. (2005). J. Am. Chem. Soc. 127:1690–1704PubMedCrossRefGoogle Scholar
  16. Job G. E., Kennedy R. J., Heitmann B., Miller J. S., Walker S. M., Kemp D. S. (2006). J. Am. Chem. Soc. 128:8227–8233PubMedCrossRefGoogle Scholar
  17. Le G. T., Abbenante G., Becker, Gratwohl M., Halliday J., Tometzki G., Zuegg J., Meutermans W. (2003). Drug Disc. Today 8:701–709CrossRefGoogle Scholar
  18. Maison W., Arce E., Renold P., Kennedy R. J., Kemp D. S. (2001). J. Am. Chem. Soc. 123:10245–10254PubMedCrossRefGoogle Scholar
  19. Merrifield R. B. (1963). J. Am. Chem. Soc. 85:2149–2154CrossRefGoogle Scholar
  20. Mimna, R., Camus, M.-S., Schmid, A., Tuchscherer, G., Lashuel. H. and Mutter, M.: 2006, Angew. Chem. Int. Ed., in pressGoogle Scholar
  21. Motta A., Morelli M. A. C., Goud N., Temussi P. A. (1989). Biochemistry 28:7996–8002PubMedCrossRefGoogle Scholar
  22. Mutter M., Tuchscherer G. (2000) Chimia 54:552–557Google Scholar
  23. Müller, K., Obrecht, D., Knierzinger, A., Stankovic, C., Spiegler, C., Bannwarth, W., Trzeciak, A., Englert, G., Labhard, A.M.and Schönholzer, P.: 1993, in B. Testa, E. Kyburz, W. Fuhrer and R. Giger (eds.), Perspectives in Medicinal Chemistry. Verlag Helvetica Chimica Acta, Basel, pp. 513–533Google Scholar
  24. Mutter M., Chandravarkar A., Boyat C., Lopez J., Dos Santos, Mandal B., Mimna R., Murat K., Patiny L., Saucède P., Tuchscherer G. (2004). Chem. Int. Ed. 43:4172–4178CrossRefGoogle Scholar
  25. Otvos Jr. L., Cudic M. (2003). Mini Revs. in Med. Chem. 3:703–711CrossRefGoogle Scholar
  26. Pal L., Chakrabarti P., Basu G. (2003). J. Mol. Biol. 326:273–291PubMedCrossRefGoogle Scholar
  27. Scholtz J. M., Qian H., York E. J., Stewart J. M., Baldwin R. L. (1991). Biopolymers 31:1463–1470PubMedCrossRefGoogle Scholar
  28. Shepherd N. E., Abbenante G., Fairlie D. P. (2004). Angew. Chem. Int. Ed. 43:2687–2690CrossRefGoogle Scholar
  29. Teixeira A., Benckhuijsen W. E., de Koning P. E., Valentijn A. R. P. M., Drijfhout J. W. (2002). Prot. & Pept. Lett. 9:379–385CrossRefGoogle Scholar
  30. Tosin M., Murphy P. V. (2002). Org. Lett. 4:3675–3678PubMedCrossRefGoogle Scholar
  31. Tuchscherer G., Lehmann C., Mathieu M. (1998). Angew. Chem. Int. Ed. 37:2990–2993CrossRefGoogle Scholar
  32. Stewart J. M., Young J. D. (1984) Solid Phase Peptide Synthesis. Pierce Chemical Company, Rockford, ILGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Richard Mimna
    • 1
  • Gabriele Tuchscherer
    • 2
  • Manfred Mutter
    • 2
  1. 1.Alnis BiosciencesRTPUSA
  2. 2.Swiss Federal Institute of Technology Lausanne (EPFL)Institute of Chemical Sciences and Engineering (ISIC)LausanneSwitzerland

Personalised recommendations