Advertisement

Chimeric Protein Engineering

  • Jianwen A. Feng
  • Lee A. Tessler
  • Garland R. Marshall
Article

Protein stability can be enhanced by the incorporation of non-natural amino acids and semi-rigid peptidomimetics to lower the entropic penalty upon protein folding through preorganization. An example is the incorporation of aminoisobutyric acid (Aib, α-methylalanine) into proteins to restrict the Φ and Ψ backbone angles adjacent to Aib to those associated with helix formation. Reverse-turn analogs were introduced into the sequences of HIV protease and ribonuclease A that enhanced their stability and retained their native enzymatic activity. In this work, a chimeric protein, design_4, was engineered, in silico, by replacing the C-terminal helix of full sequence design protein (FSD-1) with a semi-rigid helix mimetic. Residues 1–16 of FSD-1 was ligated in silico with the N-terminus of a phenylbipyridyl-based helix mimetic to form design_4. The designed chimeric protein was stable and maintained the designed fold in a 100-nanosecond molecular dynamics simulation at 280 K. Its β-hairpin adopted conformations that formed three additional hydrogen bonds. Compared to FSD-1, design_4 contained fewer peptide bonds and internal degrees of freedom; it should, therefore, be more resistant to proteolytic degradation and denaturation.

Keywords

protein engineering helix mimetic peptidomimetic chimeric protein 

Notes

Acknowledgments

The authors would like to thank Daniel J. Kuster and Christy Taylor, Ph.D. for valuable discussions and critical reading of this manuscript. This research was supported in part by NIH research grant (GM 08460) to GRM. J.F. also acknowledges graduate support from the Division of Biology and Biomedical Science of Washington University in St. Louis, the Computational Biology Training Grant (GM 008802), and the Kauffman Foundation. Computational resources were supported in part by TeraGrid.

References

  1. Arnold U., Hinderaker M. P., Nilsson B. L., Huck B. R., Gellman S. H., Raines R. T. (2002) J. Am. Chem. Soc. 124: 8522–8523PubMedCrossRefGoogle Scholar
  2. Baca M., Alewood P. F., Kent S. B. (1993) Protein Sci. 2: 1085–1091PubMedCrossRefGoogle Scholar
  3. Berendsen H. J., Postma J., Dinola A., Haak J. J. Phys. Chem. 81 (1984) 3684–3690CrossRefGoogle Scholar
  4. Berendsen H. J. C., Vanderspoel D., Vandrunen R. (1995) Comput. Phys. Commun. 91: 43–56CrossRefGoogle Scholar
  5. Che Y., Brooks B. R., Marshall G. R. (2006) J. Comput. Aided Mol. Des. 20: 109–130PubMedCrossRefGoogle Scholar
  6. Dahiyat B. I., Mayo S. L. (1997) Science 278: 82–87PubMedCrossRefGoogle Scholar
  7. Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G. (1995) J. Chem. Phys. 103: 8577–8593CrossRefGoogle Scholar
  8. Gupta R., Beg Q. K., Lorenz P. (2002) Appl. Microbiol. Biotechnol. 59: 15–32PubMedCrossRefGoogle Scholar
  9. Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. (1997) J. Comput. Chem. 18: 1463–1472CrossRefGoogle Scholar
  10. Humphrey W., Dalke A., Schulten K. (1996) J. Mol. Graph. 14: 33PubMedCrossRefGoogle Scholar
  11. Jang S., Kim E., Pak Y. (2006) Proteins 62: 663–671PubMedCrossRefGoogle Scholar
  12. Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. (1983) J. Chem. Phys. 79: 926–935CrossRefGoogle Scholar
  13. Kaminski G. A., Friesner R. A., Tirado-Rives J., Jorgensen W. L. (2001) J. Phys. Chem. B 105: 6474–6487CrossRefGoogle Scholar
  14. Kuhlman B., Dantas G., Ireton G. C., Varani G., Stoddard B. L., Baker D. (2003) Sci. 302: 1364–1368CrossRefGoogle Scholar
  15. Lei H., Dastidar S. G., Duan Y. (2006) J. Phys. Chem. B Condens. Matter. Mater. Surf. Interfaces Biophys. 110: 22001–22008PubMedGoogle Scholar
  16. Lei H., Duan Y. (2004) J. Chem. Phys. 121: 12104–12111PubMedCrossRefGoogle Scholar
  17. Lindahl E., Hessv B., van der Spoel D. (2001) J. Mol. Model. 7: 306–317Google Scholar
  18. Marshall G. R., Bosshard H. E. (1972) Circ. Res. 31(Suppl 2): 143–150PubMedGoogle Scholar
  19. Marshall G. R., Hodgkin E. E., Langs D. A., Smith G. D., Zabrocki J., Leplawy M. T. (1990) Proc. Natl. Acad. Sci. USA 87: 487–491PubMedCrossRefGoogle Scholar
  20. Merrifield B. (1993) Life During a Golden Age of Peptide Chemistry: The Concept and Development of Solid-phase Peptide Synthesis. American Chemical Society, Washington, DCGoogle Scholar
  21. Raines R. T. (1998) Chem. Rev. 98: 1045–1066PubMedCrossRefGoogle Scholar
  22. Ryckaert J., Ciccotti G., Berendsen H. J. (1977) J. Comput. Phys. 23: 327CrossRefGoogle Scholar
  23. Schrodinger: 2006, Portland, OR 97021Google Scholar
  24. Snow C. D., Nguyen H., Pande V. S., Gruebele M. (2002) Nature 420: 102–106PubMedCrossRefGoogle Scholar
  25. Still W. C., Tempczyk A., Hawley R. C., Hendrickson T. (1990) J. Am. Chem. Soc. 112: 6127–6129CrossRefGoogle Scholar
  26. Struthers M., Ottesen J. J., Imperiali B. (1998) Fold Des. 3: 95–103PubMedCrossRefGoogle Scholar
  27. Struthers M. D., Cheng R. P., Imperiali B. (1996) Science 271: 342–345PubMedCrossRefGoogle Scholar
  28. Sugita Y., Okamoto Y. (1999) Chem. Phys. Lett. 314: 141–151CrossRefGoogle Scholar
  29. Takeuchi Y., Marshall G. R. (1998) J. Am. Chem. Soc. 120: 5363–5372CrossRefGoogle Scholar
  30. Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. (2005) J. Comput. Chem. 26: 1701–1718CrossRefGoogle Scholar
  31. Yin H., Lee G. I., Park H. S., Payne G. A., Rodriguez J. M., Sebti S. M., Hamilton A. D. (2005a) Angew. Chem. Int. Ed. Engl. 44: 2704–2707CrossRefGoogle Scholar
  32. Yin H., Lee G. I., Sedey K. A., Kutzki O., Park H. S., Orner B. P., Ernst J. T., Wang H. G., Sebti S. M., Hamilton A. D. (2005b) J. Am. Chem. Soc. 127: 10191–10196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Jianwen A. Feng
    • 1
  • Lee A. Tessler
    • 1
  • Garland R. Marshall
    • 1
  1. 1.Center for Computational Biology, Department of Biochemistry and Molecular BiophysicsWashington UniversitySt. LouisUSA

Personalised recommendations