Advertisement

Synthesis of Quantum Dots Labeled Short Peptides and Imaging the T cell Surface Receptors with QDs-Labeled Peptides

  • Yanfeng Qi
  • Jie Chen
  • Liping Wang
  • Bai Yang
  • Wei Li
Article
  • 174 Downloads

Abstract

Semiconductor quantum dots have been used for labeling many biomacromolecules and small molecules, but it remains a challenge to couple it with short active peptides that play critical roles in many physiological processes. Several binding methods for QDs and short peptides have been reported, but all with some limitations in amino acid sequence. In this paper, we report a method for synthesis of quantum dots labeled short peptides that is appropriate to any short peptide. The quantum dots (CdTe)-labeled short peptides were verified and characterized by RP-HPLC. The QDs-labeled peptides were applied to monitor the specific binding between two immune peptides and T cell surface receptors. The quantum dots-labeled immune peptides provide a powerful method for studying immunological functions of these peptides, and an effective strategy for monitoring their complex modulating processes in vivo.

Keywords

Cell labeling immune peptide quantum dots 

Notes

Acknowledgments

This work was supported by a grant from the Special Funds for Major State Basic Research Projects (No. 2002CB613401).

References

  1. Åkerman M. E., Chan W. C. W., Laakkonen P., Bhatia S. N., Ruoslahti E. (2002) PNAS 99: 12617–12621PubMedCrossRefGoogle Scholar
  2. Bailey R. E., Smith A. M., Nie S. (2004) Physica. E 25(1): 1–12CrossRefGoogle Scholar
  3. Bruchez Jr. M., Moronne M., Gin P., Weiss S., Paul Alivisatos A. (1998) Science 281: 2013–2016PubMedCrossRefGoogle Scholar
  4. Chan W. C., Nie S. (1998) Science 281(5385): 2016–2018PubMedCrossRefGoogle Scholar
  5. Chan, W. and White, P.: 2000, Fmoc Solid Phase Peptide Synthesis. Oxford University PressGoogle Scholar
  6. Chan W. C., Maxwell D. J., Gao X., Bailey R. E., Han M., Nie S. (2002) Curr. Opin. Biotechnol. 13(1): 40–46PubMedCrossRefGoogle Scholar
  7. Gattas-Asfura, K. M. and Leblanc, R. M.: 2003, Chem. Commun. 2684–2685Google Scholar
  8. Jaiswal J. K., Simon S. M. (2004) Trends Cell Biol. 14(9): 497–504PubMedCrossRefGoogle Scholar
  9. Lidke D. S., Nagy P., Heintzmann R., Arndt-Jovin D. J., Post J. N., Grecco H. E., Jares-Erijman E. A., Jovin T. M. (2004) Nat. Biotechnol. 22: 198–203PubMedCrossRefGoogle Scholar
  10. Winter J. O., Liu T. Y., Korgel B. A., Schmidt C. E. (2001) Adv. Mater. 13: 1673–1677CrossRefGoogle Scholar
  11. Zhang, C. Y., Ma, H., Ding, Y., Jin, L., Chen, D. Y. and Nie, S.: 2000, Analyst 125(6), 1029–1031Google Scholar
  12. Zhang, H., Wang, L. P., Xiong, H. M., Hu, L. H., Yang, B., Li, W.: 2003a, Adv. Mater. 15(20), 1712–1715Google Scholar
  13. Zhang H., Zhou Z., Yang B., Gao M. Y. (2003b) J. Phys. Chem. B 107: 8–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yanfeng Qi
    • 1
  • Jie Chen
    • 1
  • Liping Wang
    • 1
  • Bai Yang
    • 2
  • Wei Li
    • 1
  1. 1.College of Life ScienceJilin UniversityChangchunP.R. China
  2. 2.Key Lab for Supramolecular Structure & Materials, College of ChemistryJilin UniversityChangchunP.R. China

Personalised recommendations