Letters in Peptide Science

, Volume 10, Issue 3–4, pp 135–147 | Cite as

The many faces of PNA

  • Peter E. Nielsen


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nielsen, P.E., Egholm, M., Berg, R.H. and Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 254 (1991) 1497-1500.PubMedGoogle Scholar
  2. 2.
    Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M. and Driver, D.A. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 365 (1993) 566-568.CrossRefPubMedGoogle Scholar
  3. 3.
    Jensen, K.K., Ørum, H., Nielsen, P.E. and Nordén, B. Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry, 36 (1997) 5072-5077.CrossRefPubMedGoogle Scholar
  4. 4.
    Wittung, P., Nielsen, P.E., Buchardt, O., Egholm, M. and Nordén. B. DNA-like double helix formed by peptide nucleic acid. Nature, 368 (1994) 561-563.CrossRefPubMedGoogle Scholar
  5. 5.
    Nielsen, P.E. and Haaima, G. Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev., 26 (1997) 73-78.CrossRefGoogle Scholar
  6. 6.
    Nielsen, P.E. and Egholm, M. (eds.) Peptide Nucleic Acids: Protocols and Applications. Horizon Press, 1999.Google Scholar
  7. 7.
    Nielsen, P.E. Peptide Nucleic Acid. A Molecule with Two Identities. Acc. Chem. Res., 32 (1999) 624-630.CrossRefGoogle Scholar
  8. 8.
    Nielsen, P.E. Antisense peptide nucleic acids. Curr. Opin. Mol. Ther.. 2 (2000) 282-287.PubMedGoogle Scholar
  9. 9.
    Nielsen, P.E. Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Curr. Opin. Biotechnol., 12 (2001) 16-20.CrossRefPubMedGoogle Scholar
  10. 10.
    Nielsen, P.E. Peptide nucleic acids as antibacterial agents via the antisense principle. Expert Opin. Invest. Drugs. 10 (2001) 331-341.CrossRefGoogle Scholar
  11. 11.
    Ray, A. and Nordén, B. Peptide nucleic acid (PNA): its med-ical and biotechnical applications and promise for the future. FASEB J., 14 (2000) 1041-1060.PubMedGoogle Scholar
  12. 12.
    Ganesh, K.N. and Nielsen, P.E. Peptide nucleic acids: ana-logs and derivatives. Curr. Org. Chem., 4 (2000) 931-943.CrossRefGoogle Scholar
  13. 13.
    Dueholm, K., Petersen, K.H., Jensen, D.K., Egholm, M., Nielsen, P.E. and Buchardt, O. Peptide nucleic acid (PNA) with a chiral backbone based on alanine. Bioorg. Medicinal Chem. Lett. 4 (1994) 1077-1080.Google Scholar
  14. 14.
    Christensen, L., Fitzpatrick, R., Gildea, B., Petersen, K.H., Hansen, H.F. Koch, T., Egholm, M., Buchardt, O., Nielsen, P.E., Coull, J. and Berg, R.H. Solid-phase synthesis of pep-tide nucleic acids (PNA) J. Peptide Sci., 3 (1995) 175-183.Google Scholar
  15. 15.
    Thomson, S.A., Josey, J.A., Cadilla, R., Gaul, M.D., Hass-man, C.F., Luzzio, M.J., Pipe, A.J., Reed, K.L., Ricca, D.J., Wiethe, R.W. and Noble, S.A. Fmoc mediated synthesis of peptide nucleic acids. Tetrah. Letters. 51 (1995) 6179-6194.Google Scholar
  16. 16.
    Egholm, M., Christensen, L., Dueholm, K.L., Buchardt, O., Coull, J. and Nielsen, P.E. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucl. Acids Res., 23 (1995) 217-222.PubMedGoogle Scholar
  17. 17.
    Eldrup, A.B., Dahl, O. and Nielsen, P.E. A novel peptide nucleic acid monomer for recognition of thymine in triple helix structures. J. Amer. Chem. Soc., 119 (1997) 11116-7.CrossRefGoogle Scholar
  18. 18.
    Haaima, G., Hansen, H.F., Christensen, L., Dahl, O. and Nielsen, P.E. Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine. Nucleic Acids Res., 25 (1997) 4639-4643.CrossRefPubMedGoogle Scholar
  19. 19.
    Eldrup, A., Nielsen, B.B., Haaima, G., Rasmussen, H., Kastrup, J.S., Christensen, C. and Nielsen P.E. 1,8-Naphthyridin-2(1H)-ones. Novel bi-and tricyclic analogues of thymine in peptide nucleic acids (PNA) Eur. J. Org. Chem., (2001) 1781-1790.Google Scholar
  20. 20.
    Lohse, J., Dahl, O. and Nielsen, P.E.: Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 11804-11808.CrossRefPubMedGoogle Scholar
  21. 21.
    Leumann, C.J. Design and evaluation of oligonucleotide analogues. Chimia, 55 (2001) 295-301.Google Scholar
  22. 22.
    D'Costa, M., Kumar, V.A. and Ganesh, K.N. Aminoethylpro-lyl Peptide Nucleic Acids (aepPNA): Chiral PNA Analogues That Form Highly Stable DNA:aepPNA2 Triplexes. Org. Lett., 1 (1999) 1513-1516.CrossRefPubMedGoogle Scholar
  23. 23.
    D'Costa, M., Kumar, V. and Ganesh, K.N. Aminoethylprolyl (aep) PNA: Mixed Purine/Pyrimidine Oligomers and Binding Orientation Preferences for PNA:DNA Duplex Formation. Org. Lett., 3 (2001) 1281-1284.CrossRefPubMedGoogle Scholar
  24. 24.
    Shammas, M.A., Simmons, C.G., Corey, D.R. and Reis, R.J.S. Telomerase inhibition by peptide nucleic acids re-verses 'immortality' of transformed human cells. Oncogene, 18 (1999) 6191-6200.CrossRefPubMedGoogle Scholar
  25. 25.
    Faruoi, A.F., Egholm, M. and Glazer, P.M. Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc. Natl. Acad. Sci. U.SA., 95 (1998) 1398-1403.Google Scholar
  26. 26.
    Sazani, P., Kang, S.H., Maier, M.A., Wei, C., Dillman, J., Summerton, J., Manoharan, M. and Kole, R. Nuclear antis-ense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res., 29 (2001) 3965-3974.PubMedGoogle Scholar
  27. 27.
    Hamilton, S.E., Simmons, C.G., Kathiriya, I.S. and Corey, D.R. Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol., 6 (1999) 343-351.CrossRefPubMedGoogle Scholar
  28. 28.
    Herbert, B.S., Pitts, A.E., Baker, S.I., Hamilton, S.E., Wright, W.E. and Shay, J.W. et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 14276-14281.CrossRefPubMedGoogle Scholar
  29. 29.
    Doyle, D.F., Braasch, D.A., Simmons, C.G., Janowski, B.A. and Corey, D.R. Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. Biochem., 40 (2001) 53-64.Google Scholar
  30. 30.
    Ljungstrøm, T., Knudsen, H. and Nielsen, P.E. Cellu-lar uptake of adamantyl conjugated peptide nucleic acids. Bioconjugate Chem., 10 (1999) 965-972.Google Scholar
  31. 31.
    Mologni, L., Marchesi, E., Nielsen, P.E. and Gambacorti-Passerini, C. Inhibition of promyelocytic leukemia (PML)/retinoic acid receptor-alpha and PML expression in acute promyelocytic leukemia cells by anti-PML peptide nucleic acid. Cancer Res., 61 (2001) 5468-73.Google Scholar
  32. 32.
    Schwartz, J.J. and Zhang, S. Peptide-mediated cellular deliv-ery. Curr. Opin. Mol. Ther., 2 (2000) 162-167.PubMedGoogle Scholar
  33. 33.
    Schwarze, S.R. Hruska, K.A. and Dowdy, S.F. Protein trans-duction: unrestricted delivery into all cells? Trends Cell. Biol., 10 (2000) 290-295.CrossRefPubMedGoogle Scholar
  34. 34.
    Pooga, M., Soomets, U., Hällbrink, M., Valkna, A., Saar, K. and Rezaei, K. et al. Cell penetrating PNA constructs regu-late galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol., 16 (1998) 857-861.CrossRefPubMedGoogle Scholar
  35. 35.
    Aldrian-Herrada, G., Desarménien, M.G., Orcel, H., Boissin-Agasse, L., Méry, J., Brugidou, J. and Rabié, A. A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucl. Acids Res., 26 (1998) 4910-4916.CrossRefPubMedGoogle Scholar
  36. 36.
    Cutrona, G., Carpaneto, E.M., Ulivi, M., Roncella, S., Landt, O. and Ferrarini, M. et al. Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat. Biotechnol., 18 (2000) 300-303.PubMedGoogle Scholar
  37. 37.
    Koppelhus, U., Awasthi, S.K., Zachar, V., Holst, H.U., Ebbe-sen, P. and Nielsen, P.E. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Anti. Nucl. Acid Drug Devel., 12 (2002) 51-63.Google Scholar
  38. 38.
    Richard, J.P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M.J., Chernomordik, L.V. and Lebleu, B.: Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem., 278 (2003) 585-90.CrossRefGoogle Scholar
  39. 39.
    Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA et al.: Antisense and antigen properties of peptide nucleic acids. Science, 258 (1992) 1481-1485.PubMedGoogle Scholar
  40. 40.
    Knudsen, H. and Nielsen, P.E. Antisense properties of duplex-and triplex-forming PNAs. Nucl. Acids Res., 24 (1996) 494-500.CrossRefPubMedGoogle Scholar
  41. 41.
    Mologni, L., Lecoutre, P., Nielsen, P.E. and Gambacorti-Passerini, C. Additive antisense effects of different PNAs on the in vitrotranslation of the PML/RAR.alpha. gene. Nucl. Acids Res., 26 (1998) 1934-1938.CrossRefPubMedGoogle Scholar
  42. 42.
    Dias, N., Dheur, S., Nielsen, P.E., Gryaznov, S., Van Aers-chot, A. and Herdewijn P. et al. Antisense PNA Tridecamers Targeted to the Coding Region of Ha-ras mRNA Arrest Polypeptide Chain Elongation. J. Mol. Biol., 294 (1999) 403-416.CrossRefPubMedGoogle Scholar
  43. 43.
    Karras, J.G., Maier, M.A., Lu, T., Watt, A. and Manoharan, M. Peptide Nucleic Acids Are Potent Modulators of En-dogenous Pre-mRNA Splicing of the Murine Interleukin-5 Receptor-.alpha. Chain. Biochem., 40 (2001) 7853-7859.Google Scholar
  44. 44.
    Sazani, P., Gemignani, F., Kang, S-H., Maier, M.A., Man-oharan, M. and Persmark, M. et al. Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat. Biotech., 20 (2002) 1228-1233.CrossRefGoogle Scholar
  45. 45.
    Nielsen, P.E. and Christensen, L. Strand displacement binding of a duplex-forming homopurine PNA to a ho-mopyrimidine duplex DNA target. J. Am. Chem. Soc., 118 (1996) 2287-2288.Google Scholar
  46. 46.
    Nielsen, P.E., Egholm, M. and Buchardt, O. Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement. J. Mol. Recognit., 7 (1994) 165-170.PubMedGoogle Scholar
  47. 47.
    Griffith, M.C., Risen, L.M., Greig, M.J., Lesnik, E.A., Sprankle, K.G. and Griffey, R.H. et al. Single and bis peptide nucleic acids as triplexing agents: binding and stoichiometry. J. Am. Chem. Soc., 117 (1995) 831-832.CrossRefGoogle Scholar
  48. 48.
    Kuhn, H., Demidov, V.V., Frank-Kamenetskii, M.D. and Nielsen, P.E. Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA. Nucl. Acids Res., 26 (1998) 582-587.CrossRefPubMedGoogle Scholar
  49. 49.
    Kaihatsu, K., Braasch, D.A., Cansizoglu, A. and Corey, D.R. Enhanced strand invasion by peptide nucleic acid-peptide conjugates. Biochem., 41 (2002) 11118-11125.Google Scholar
  50. 50.
    Bentin, T. and Nielsen, P.E. Superior duplex DNA strand in-vasion by acridine conjugated peptide nucleic acids. J. Amer. Chem. Soc., 125 (2003) 6378-6379..146Google Scholar
  51. 51.
    Demidov, V.V., Yavnilovich, M.V., Belotserkovskii, B.P., Frank-Kamenetskii, M.D. and Nielsen, P.E. Kinetics and mechanism of polyamide ('peptide') nucleic acid binding to duplex DNA. Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 2637-2641.PubMedGoogle Scholar
  52. 52.
    Vickers, T.A., Griffity, M.C., Ramasamy, K., Risen, L.M. and Freier, S.M. Inhibition of NF-.ê.B specific transcriptional ac-tivation by PNA strand invasion. Nucl. Acids Res., 23 (1995) 3003-3008.PubMedGoogle Scholar
  53. 53.
    Nielsen, P.E., Egholm, M., Berg, R.H., Buchardt, O. Se-quence specific inhibition of DNA restriction enzyme cleav-age by PNA. Nucl. Acids Res. 21 (1993) 197-200.PubMedGoogle Scholar
  54. 54.
    Veselkov, A.G., Demidov, V.V., Nielsen, P.E. and Frank-Kamenetskii, M.D. A new class of genome rare cutters. Nucl. Acids Res., 24 (1996) 2483-2487.CrossRefPubMedGoogle Scholar
  55. 55.
    Nielsen, P.E., Egholm, M. and Buchardt, O. Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene, 149 (1994) 139-145.CrossRefPubMedGoogle Scholar
  56. 56.
    Møllegaard, N.E., Buchardt, O., Egholm, M. and Nielsen, P.E. Peptide nucleic acid-DNA strand displacement loops as artificial transcription promoters. Proc. Natl. Acad. Sci. U.S.A., 91 (1994) 3892-3895.PubMedGoogle Scholar
  57. 57.
    Wang, G., Xu, X., Pace, B., Dean, D.A., Glazer, P.M. and Chan, P. et al. Peptide nucleic acid (PNA) binding-mediated induction of human ã-globin gene expression. Nucl. Acids Res., 27 (1999) 2806-2813.PubMedGoogle Scholar
  58. 58.
    Bentin, T. and Nielsen, P.E. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA 'Breathing' Dynamics. Biochem., 35 (1996) 8863-8869.Google Scholar
  59. 59.
    Larsen, H.J. and Nielsen, P.E. Transcription-mediated bind-ing of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription. Nucl. Acids Res., 24 (1996) 458-463.PubMedGoogle Scholar
  60. 60.
    Good, L. and Nielsen, P.E. Inhibition of translation and bac-terial growth by peptide nucleic acid targeted to ribosomal RNA. Proc. Natl. Acad. Sci. U.S.A., 95 (1998) 2073-2076.CrossRefPubMedGoogle Scholar
  61. 61.
    Good, L. and Nielsen, P.E. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol., 16 (1998) 355-358.CrossRefPubMedGoogle Scholar
  62. 62.
    Good., L., Sandberg, R., Larsson, O., Nielsen, P.E. and Wahlestedt, C. Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiol., 146 (2000) 2665-2670.Google Scholar
  63. 63.
    Vaara, M. and Porro, M. Group of peptides that act syner-gistically with hydrophobic antibiotics against gram-negative enteric bacteria.Antimicrob. Agents Chemother., 40 (1996) 1801-5.Google Scholar
  64. 64.
    Good, L., Awasthi, S.K., Dryselius, R., Larsson, O. and Nielsen, P.E. Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol., 19 (2001) 360-364.CrossRefPubMedGoogle Scholar
  65. 65.
    Koppelhus, U., Zachar, V., Nielsen, P.E., Liu, X., Eugen-Olsen, J. and Ebbesen, P. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucl. Acids Res., 25 (1997) 2167-2173.CrossRefPubMedGoogle Scholar
  66. 66.
    Lee, R., Kaushik, N., Modak, M.J., Vinayak, R. and Pandey, V.N. Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in VitroHIV-1 Reverse Transcription. Biochem., 37 (1998) 900-910.Google Scholar
  67. 67.
    Boulmé, F., Freund, F., Moreau, S., Nielsen, P.E., Gryaznov, S. and Toulmé, J.J. et al. Modified (PNA, 2'-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription. Nucl. Acids Res. 26 (1998) 5492-5500.PubMedGoogle Scholar
  68. 68.
    Boulme, F., Freund, F., Gryaznov, S., Nielsen, P.E., Tarrago-Litvak, L. and Litvak, S. Study of HIV-2 primer-template initiation complex using antisense oligonucleotides. Eur. J. Biochem., 267 (2000) 2803-2811.CrossRefPubMedGoogle Scholar
  69. 69.
    Mayhood, T., Kaushik, N., Pandey, P.K., Kashanchi, F., Deng, L. and Pandey, V.N. Inhibition of Tat-mediated trans-activation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochem., 39 (2000) 11532-11539.Google Scholar
  70. 70.
    Sei, S., Yang, Q.E., O'Neill, D., Yoshimura, K. and Mitsuya, H. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J. Virol., 74 (2000) 4621-4633.CrossRefPubMedGoogle Scholar
  71. 71.
    Kaushik, N., Basu, A., Palumbo, P., Myers, R.L. and Pandey, V.N. Anti-TAR polyamide nucleotide analog con-jugated with a membrane-permeating peptide inhibits hu-man immunodeficiency virus type 1 production. J. Virol. 76 (2002) 3881-3891.CrossRefPubMedGoogle Scholar
  72. 72.
    Stock, R.P., Olvera, A., Sanchez, R., Saralegui, A., Scarfi, S. and Sanchez-Lopez R. et al. Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers. Nat. Biotechnol., 19 (2001) 231-234.CrossRefPubMedGoogle Scholar
  73. 73.
    Nielsen, P.E. Peptide nucleic acid (PNA): A model structure for the primordial gegetic material. Orig. Life Evol. Biosph., 23 (1993) 323-327.CrossRefPubMedGoogle Scholar
  74. 74.
    Nelson, K.E., Levy, M. and Miller, S.L. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 3868-3871.PubMedGoogle Scholar
  75. 75.
    Böhler, C., Nielsen, P.E. and Orgel, L.E. Template switching between PNA and RNA oligonucleotides. Nature, 376 (1995) 578-581.CrossRefPubMedGoogle Scholar
  76. 76.
    Schmidt, J.G., Nielsen, P.E. and Orgel, L.E. Information transfer from peptide nucleic acids to RNA by template-directed syntheses. Nucl. Acids Res., 25 (1997), 4797-4802.PubMedGoogle Scholar
  77. 77.
    Schmidt, J.G., Christensen, L., Nielsen, P.E. and Orgel, L.E. Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucl. Acids Res., 25 (1997) 4792-4796.PubMedGoogle Scholar
  78. 78.
    Kozlov, I.A., Orgel, L.E. and Nielsen, P.E. Remote enan-tioselection transmitted by an achiral peptide nucleic acid backbone. Angew. Chem. Int. Ed., 39 (2000) 4292-4295.CrossRefGoogle Scholar
  79. 79.
    Ørum, H., Nielsen, P.E., Egholm, M., Berg, R.H., Buchardt, O. and Stanley, C. Single base pair mutation analysis by PNA directed PCR clamping. Nucl. Acids Res., 21 (1993) 5332-5336.PubMedGoogle Scholar
  80. 80.
    Behn, M. and Schuermann, M. Sensitive detection of p53 gene mutations by a 'mutant enriched' PCR-SSCP technique. Nucl. Acids Res., 26 (1998) 1356-1358.CrossRefPubMedGoogle Scholar
  81. 81.
    Murdock, D.G., Christacos, N.C. and Wallace, D.C. The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensit-ive PNA-directed PCR clamping based method. Nucl. Acids Res., 28 (2000) 4350-4355.CrossRefPubMedGoogle Scholar
  82. 82.
    Myal, Y., Blanchard, A., Watson, P., Corrin, M., Shiu, R. and Iwasiow, B. Detection of genetic point mutations by peptide nucleic acid-mediated polymerase chain reaction clamping using paraffin-embedded specimens. Anal. Biochem., 285 (2000) 169-172.CrossRefPubMedGoogle Scholar
  83. 83.
    Von Wintzingerode, F., Landt, O., Ehrlich, A. and Gobel, U.B. Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl. Environ. Microbiol., 66 (2000) 549-557.CrossRefPubMedGoogle Scholar
  84. 84.
    Behn, M., Thiede, C., Neubauer, A., Pankow, W. and Schuermann, M. Facilitated detection of oncogene mutations.147 from exfoliated tissue material by a PNA-mediated 'enriched PCR' protocol. J. Pathol., 190 (2000) 69-75.CrossRefPubMedGoogle Scholar
  85. 85.
    Lansdorp, P.M., Verwoerd, N.P., Van de Rijke, F.M., Dragowska, V., Little M-T. and Dirks, R.W. et al., Heterogeneity in telomere length of human chromosomes. Hum. Mol. Gen., 5 (1996) 685-691.PubMedGoogle Scholar
  86. 86.
    Chen, C., Wu, B., Wie, T., Egholm, M., Strauss, W.M. Unique chromosome identification and sequence-specific structural analysis with short PNA oligomers. Mamm. Genome, 11 (2000) 384-391.PubMedGoogle Scholar
  87. 87.
    Hongmanee, P., Stender, H. and Rasmussen, O.F. Evaluation of a fluorescence in situ hybridization assay for differen-tiation between tuberculous and nontuberculous Mycobac-terium species in smears of Lowenstein-Jensen and myco-bacteria growth indicator tube cultures using peptide nucleic acid probes. J. Clin. Microbiol. 39 (2001) 1032-1035.CrossRefPubMedGoogle Scholar
  88. 88.
    Drobniewski, F.A., More, P.G. and Harris, G.S. Differenti-ation of Mycobacterium tuberculosis complex and nontuber-culous mycobacterial liquid cultures by using peptide nuc-leic acid-fluorescence in situ hybridization probes. J. Clin. Microbiol. 38 (2000) 444-447.PubMedGoogle Scholar
  89. 89.
    Stender, H., Mollerup, T.A., Lund, K., Petersen, K.H., Hong-manee, P. and Godtfredsen, S.E. Direct detection and iden-tification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situhybridization (FISH) using peptide nucleic acid (PNA) probes. Int. J. Tuberc. Lung. Dis., 3 (1999) 830-837.PubMedGoogle Scholar
  90. 90.
    Perry-O'Keefe, H., Stender, H., Broomer, A., Oliveira, K., Coull, J. and Hyldig-Nielsen, J.J. Filter-based PNA in situhybridization for rapid detection, identification and enumer-ation of specific micro-organisms. J. Appl. Microbiol., 90 (2001) 180-189.CrossRefPubMedGoogle Scholar
  91. 91.
    Stender, H., Oliveira, K., Rigby, S., Bargoot, F. and Coull, J. Rapid detection, identification, and enumeration of Escheri-chia coli by fluorescence in situhybridization using an array scanner. J. Microbiol. Methods, 45 (2001) 31-39.CrossRefPubMedGoogle Scholar
  92. 92.
    Stender, H., Sage, A., Oliveira, K., Broomer, A.J., Young, B. and Coull, J. Combination of ATP-bioluminescence and PNA probes allows rapid total counts and identification of specific microorganisms in mixed populations. J. Microbiol. Methods, 46 (2001) 69-75.CrossRefPubMedGoogle Scholar
  93. 93.
    Stender, H., Kurtzman, C., Hyldig-Nielsen, J.J., Sørensen, D., Broomer, A. and Oliveira, K. et al. Identification of Dek-kera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl. Environ. Microbiol., 67 (2001) 938-941.PubMedGoogle Scholar
  94. 94.
    Worden, A.Z., Chisholm, S.W. and Binder, B.J. In situhy-bridization of Prochlorococcus and Synechococcus (Marine cyanobacteria) spp. with rRNA-targeted peptide nucleic acid probes. Appl. Environ. Microbiol., 66 (2000) 284-289.PubMedGoogle Scholar
  95. 95.
    Isacsson, J., Cao, H., Ohlsson, L., Nordgren, S., Svanvik, N. and Westman, G. et al. Rapid and specific detection of PCR products using light-up probes. Mol. Cell Probes, 14 (2000) 321-328.CrossRefPubMedGoogle Scholar
  96. 96.
    Svanvik, N., Westman, G., Wang, D. and Kubista, M. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal. Biochem., 281 (2000) 26-35.CrossRefPubMedGoogle Scholar
  97. 97.
    Svanvik, N., Nygren, J., Westman, G. and Kubista, M. Free-Probe Fluorescence of Light-up Probes. J. Am. Chem. Soc., 123 (2001) 803-809.Google Scholar
  98. 98.
    Igloi, G.L. Automated detection of point muta-tions by electrophoresis in peptide-nucleic acid-containing gels. BioTechniques, 27 (1999) 798,800,802,804,806-798,800,802,804,808.Google Scholar
  99. 99.
    Igloi, G.L. Simultaneous identification of mutations by dual-parameter multiplex hybridization in peptide nucleic acid-containing virtual arrays. Genomics, 74 (2001) 402-407.CrossRefPubMedGoogle Scholar
  100. 100.
    Ørum, H., Nielsen, P.E., Jørgensen, M., Larsson, C., Stan-ley, C. and Koch, T. Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection. BioTechniques, 19 (1995) 472-480.PubMedGoogle Scholar
  101. 101.
    Seeger, C., Batz, H.-G., Ørum, H. PNA-mediated purifica-tion of PCR amplifiable human genomic DNA from whole blood. BioTechniques, 23 (1997) 512-516.PubMedGoogle Scholar
  102. 102.
    Chandler, D.P., Stults, J.R., Anderson, K.K., Cebula, S., Schuck, B.L. and Brockman, F.J. Affinity capture and recovery of DNA at femtomolar concentrations with peptide nucleic acid probes. Anal. Biochem., 283 (2000) 241-249.CrossRefPubMedGoogle Scholar
  103. 103.
    Chandler, D.P., Stults, J.R., Cebula, S., Schuck, B.L., Weaver, D.W. and Anderson, K.K. et al. Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps. Appl. Environ. Microbiol. 66 (2000) 3438-3445.Google Scholar
  104. 104.
    Brandén, L.J., Christensson, B. and Smith, C.I.E. In vivonuclear delivery of oligonucleotides via hybridizing bifunctional peptides. Gene Ther., 8 (2001) 84-87.CrossRefPubMedGoogle Scholar
  105. 105.
    Brandén, L.J., Mohamed, A.J. and Smith, C.I.E. A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 1999, 17 784-787.CrossRefPubMedGoogle Scholar
  106. 106.
    Liang, K.W., Hoffman, E.P. and Huang, L.,Targeted delivery of plasmid DNA to myogenic cells via transferrin-conjugated peptide nucleic acid. Molecular Therapy., 1 (2000) 236-243.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Peter E. Nielsen
    • 1
  1. 1.Center for Biomolecular Recognition, Department of Medical Biochemistry & Genetics, The Panum Institute, Blegdamsvej 3cCopenhagen NDenmark (e-mail

Personalised recommendations