Advertisement

Letters in Peptide Science

, Volume 10, Issue 5–6, pp 539–543 | Cite as

CD measurement of aqueous protein solution at high temperature up to 180 °C —Thermodynamic analysis of thermophilic protein by pressure-proof cell compartment

  • Atsushi Ohshima
  • Susumu Uchiyama
  • Hiroaki Nakano
  • Takuya Yoshida
  • Tadayasu Ohkubo
  • Yuji Kobayashi
Article
  • 21 Downloads

Abstract

During investigation of thermal transitions of peptides and proteins, the transition temperature is occasionally too high to trace the whole transition profile. In order to solve this problem and perform conformational analysis at high temperature, we have recently developed a pressure-proof cell compartment for circular dichroism measurements. Here we demonstrate how well this system works to collect CD spectra, at high temperature up to 180 °c in aqueous solution. Ribosome recycling factor (RRF), which consists of two domains; three stranded α-helix bundle domain (Domain I) and β α/β domain (Domain II), was used as an example. We constructed models of isolated Domain I substituting Domain II with tripeptide (Gly-Gly-Gly) and compared these models from mesophilic and thermophilic bacteria. The melting profiles of these models revealed that thermal stability is enhanced by the increased enthalpy provided by hydrogen bonds and ionic pairing.

circular dichroism heat stable protein pressure-proof cell ribosome recycling factor thermodynamic parameters thermophilic bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uchiyama, S., Hasegawa, J., Tanimoto, Y., Moriguchi, H., Mizutani, M., Igarashi, Y., Sambongi, Y. and Kobayashi, Y., Protein Eng., 15 (2002) 455.PubMedGoogle Scholar
  2. 2.
    Yoshida, T., Uchiyama, S., Nakano, H., Kashimori, H., Kijima, H., Ohshima, T., Saihara, Y., Ishino, T., Shimahara, H., Yokose, K., Ohkubo, T., Kaji, A. and Kobayashi, Y., Biochemistry, 40 (2001) 2387.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakano, H., Yoshida, T., Uchiyama, S., Kawachi, M., Matsuo, H., Kato, T., Ohshima, A., Yamaichi, Y., Honda, T., Kato, H., Yamagata, Y., Ohkubo, T. and Kobayashi, Y., J. Biol. Chem., 278 (2003) 3427.PubMedGoogle Scholar
  4. 4.
    Selmer, M., Al-Karadaghi, S., Hirokawa, G., Kaji, A. and Liljas, A., Science, 286 (1999) 2349.CrossRefPubMedGoogle Scholar
  5. 5.
    Yoshida, T., Oka, S., Uchiyama, S., Nakano, H., Kawasaki, T., Ohkubo, T. and Kobayashi, Y., Biochemistry, 42 (2003) 4101. 6.Uchiyama, S., Ohshima, A., Yoshida, T., Nakano, H., Nishina, K., Matsuo, H., Fujita, H., Ohkubo, T. and Kobayashi, Y., Biochemistry, submitted.CrossRefPubMedGoogle Scholar
  6. 7.
    Marky, L. and Breslauer, K., Biopolymers, 26 (1987) 1601.PubMedGoogle Scholar
  7. 8.
    Toumadje, A., Alcorn, S. W. and Johnson, W.C., Anal. Biochem., 200 (1992) 321.CrossRefPubMedGoogle Scholar
  8. 9.
    Deleage, G. and Geourjon, C., Comp. Appl. Biosc., 9 (1993) 197.PubMedGoogle Scholar
  9. 10.
    Sreerama, N. and Woody, R.W., in N. Berova, K. Nakanishi and R.W. Woody, (eds.), Circular Dichroism: Principles and Applications 2nd edn, Wiley-VCH, New York, 2000, pp. 601–620.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Atsushi Ohshima
    • 1
  • Susumu Uchiyama
    • 1
  • Hiroaki Nakano
    • 1
  • Takuya Yoshida
    • 1
  • Tadayasu Ohkubo
    • 1
  • Yuji Kobayashi
    • 1
  1. 1.Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan

Personalised recommendations