Lithology and Mineral Resources

, Volume 40, Issue 6, pp 489–504 | Cite as

History of Sedimentation on the Voring Plateau (Norwegian Sea) during the Last 25 ka

  • M. A. Levitan
  • I. O. Murdmaa
  • E. V. Ivanova
  • M. V. Bourtman
  • V. V. Krupskaya
  • N. O. Akhrimenko
  • D. V. Eroshenko


Based on sedimentological, mineralogical, geochemical, and micropaleontological data on the comprehensively investigated Core ASV 1372, the late Pleistocene-Holocene sedimentation history is reconstructed for the Voring marginal plateau (continental margin of the Norwegian Sea). The age model is constructed based on the correlation with several adjacent cores, for which the AMS radiocarbon dates are available. Lithostratigraphic correlation made it possible to compare stratigraphic division of Core ASV 1372 with other cores recovered from the Voring Plateau and the shelf and continental slope off the central Norway. It is concluded that the compositional and structural features of sediments are correlated with paleoclimatic and paleoceanographic changes, variations in provenances, as well as agents and pathways of sedimentary material transport.


Sedimentation Continental Margin Sedimentology Continental Slope Radiocarbon Date 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barash, M.S. and Os'kina, N.S., Distribution of Globigerina Pachyderma (Ehr.) in Oceanic Sediments Depending on Surface Water Temperature, in Morskaya mikropaleontologiya (Marine Paleotology), Moscow: Nauka, 1978, pp. 196–205.Google Scholar
  2. Berner, H., Mechanismen der Sedimenbildung in der Framstrasse, im Arktischen Ozean und in der Norwegischen See, PhD Thesis, Bremen: Bremen Univ., 1991.Google Scholar
  3. Bischof, J., Ice Drift, Ocean and Climate Change, Berlin: Springer, 2000.Google Scholar
  4. Dahlgren, K.I.T. and Vorren, T.O., Sedimentary Environment and Glacial History during the Last 40 Ka of the Voring Continental Margin, Mid-Norway, Mar. Geol., 2003, vol. 193, pp. 93–127.CrossRefGoogle Scholar
  5. Dokken, T.M. and Jansen, E., Rapid Changes in the Mechanism of Ocean Convection during the Last Glacial Period, Nature, 1999, vol. 401, pp. 458–461.CrossRefGoogle Scholar
  6. Duplessy, J.-C., Labeyrie, L., Juillet-Leclerc, A., et al., Surface Salinity Reconstruction of the North Atlantic Ocean during the Last Glacial Maximum, Oceanol. Acta, 1991, vol. 14, no.4, pp. 311–324.Google Scholar
  7. Frolov, V.T., Geneticheskaya tipizatsiya morskikh otlozhenii (Genetic Typification of Marine Sediments), Moscow: Nauka, 1984.Google Scholar
  8. Frolov, V.T., Litologiya (Lithology), Moscow: Mosk. Gos. Univ., part 3, 1995.Google Scholar
  9. Gorshkova, T.I., Carbonates in Bottom Deposits in the Norwegian-Greenland Basin as an Indicator of Water Mass Distribution, Okeanologiya, 1965, vol. 57, pp. 34–42.Google Scholar
  10. Gurvich, E.G., Report of the Chief of Geochemical Team, in Otchet po 12 reisu nis “Akademik Sergei Vavilov” (Report of Cruise 12 of the R/V Academician Sergei Vavilov), Moscow: Inst. Okeanol. Ross. Akad. Nauk, 1997, pp. 86–105.Google Scholar
  11. Hald, M., Climate Change and Paleoceanography, in The Northern North Atlantic: A Changing Environment, Schafer, P., Ritzrau, W., Schluter, M., Thiede, J., Eds., Berlin: Springer, 2001, pp. 281–290.Google Scholar
  12. Hebbeln, D., Henrich, R., and Baumann, K.-H., Paleoceanography of the Last Interglacial/Glacial Cycle in the Polar North Atlantic, Quat. Sci. Rev., 1998, vol. 17, pp. 125–153.CrossRefGoogle Scholar
  13. Henrich, R., Kassens, H., Vogelsang, E., and Thiede, J., Sedimentary Facies of Glacial-Interglacial Cycles in the Norwegian Sea during the Last 350 Ka, Mar. Geol., 1989, vol. 86, pp. 283–319.CrossRefGoogle Scholar
  14. Kellog, T.B., Paleoclimatology and Paleoceanography of the Norwegian and Greenland Seas: Glacial-Interglacial Contrasts, Boreas, 1980, vol. 9, pp. 115–137.Google Scholar
  15. Klitgaard-Kristensen, D., Sejrup, H.P., and Hafliclason, H., The Last 18 Kyr Fluctuations in Norwegian Sea Surface Conditions and Implications for the Magnitude of Climatic Change: Evidence from the North Sea, Paleoceanography, 2001, vol. 16, no.5, pp. 455–467.CrossRefGoogle Scholar
  16. Korneeva, G.A. and Gordeeva, E.L., Hydrolytic Fermentation Activities in Bottom Sediment Cores from the Norwegian Sea and Statistical Analysis of Their Distribution, Izv. Ross. Akad. Nauk. Ser. Biol., 2004, no. 1, pp. 105–114.Google Scholar
  17. Kotenev, B.N., Geochronology of the Late Quaternary Deep-Water Bottom Sediments of the Norwegian and Greenland Seas, in Geokhronologiya chetvertichnogo perioda (Quaternary Geochronology), Moscow: Nauka, 1980, pp. 29–34.Google Scholar
  18. Kuhlemann, J., Lange, H., and Paetsch, H., Implications of a Connection between Clay Mineral Variations and Coarse Grained Debris and Lithology in the Central Norwegian-Greenland Sea, Mar. Geol., 1993, vol. 114, pp. 1–11.CrossRefGoogle Scholar
  19. Levitan, M.A., Mityaev, M.M., and Ivanov, V.V., Facies Variability of Holocene Sediments from the Yermak Plateau (Based on the >0.063-mm Fraction Data), Litol. Polezn. Iskop., 2000, vol. 35, no.3, pp. 235–245 [Lithol. Miner. Resour. (Engl. Transl.), 2000, vol. 35, no. 3, pp. 200–210].Google Scholar
  20. Levitan, M.A., Murdmaa, I.O., Bourtman, M.V., and Eroshenko, D.V., History of Sedimentation on the Voring Plateau (Norwegian Sea) during the Last 20 ka, in Geologiya morei i okeanov (Geology of Seas and Oceans), Moscow: GEOS, 2003, vol. 1, pp. 47–48.Google Scholar
  21. Levitan M. and Stein R., Sedimentation Rates History of the Nordic Seas during the Last Glacial Cycle, Geo-Marine Letters, 2005 (in press).Google Scholar
  22. Matishov, G.G., Dno okeana v lednikovyi period (Ocean Floor during the Glacial Period), Moscow: Nauka, 1984.Google Scholar
  23. Merkt, J., Varve Chronology and Palynology of the Late Glacial in Northwest Germany from Lacustrine Sediments of Hamelsee in Lower Saxony, Quatern. Int., 1999, vol. 61, pp. 41–59.Google Scholar
  24. O Cofaigh, C., Taylor, J., Dowdeswell, J.A., et al., Sediment Reworking on High-Latitude Continental Margins and Its Implications for Paleoceanographic Studies: Insights from the Norwegian-Greenland Sea, in Glacier-Influenced Sedimentation on High-Latitude Continental Margins, Dowdeswell, J.A. and O Cofaigh, C., Eds., Geol. Soc., London, Spec. Publ., 2002, vol. 203, pp. 325–348.Google Scholar
  25. Sarnthein, M., Stattegger, K., Dreger, D., et al., Fundamental Modes and Abrupt Changes in North Atlantic Circulation and Climate over the Last 60 Ky—Concepts, Reconstruction and Numerical Modeling, in The Northern North Atlantic: A Changing Environment, Schafer, P., Ritzrau, W., Schluter, M., and Thiede, J., Eds., Berlin: Springer, 2001, pp. 365–410.Google Scholar
  26. Sarnthein, M., Pflaumann, U., and Weinelt, M., Past Extent of Sea Ice in the Northern North Atlantic Inferred from Foraminiferal Paleotemperature Estimates, Paleoceanography, 2003, vol. 18, no.2, p. 1047 (25.1–25.8).Google Scholar
  27. Scourse, J.D., Hall, I.R., McCave, I.N., et al., The Origin of Heinrich Layers: Evidence from H2 for European Precursor Events, Earth Planet. Sci. Lett., 2000, vol. 182, no.2, pp. 187–195.CrossRefGoogle Scholar
  28. Stuiver, M., Reimer, P.J., Bard, E., et al., INTCAL98 Radiocarbon Age Calibration, 24000-0 cal. BP, Radiocarbon, 1998, vol. 40, pp. 1041–1083.Google Scholar
  29. Taylor, J., Dowdeswell, J.A., and Siegert, M.J., Late Weichselian Depositional Processes, Fluxes, and Sediment Volumes on the Margins of the Norwegian Sea (62–75° N), Mar. Geol., 2002, vol. 188, pp. 61–77.CrossRefGoogle Scholar
  30. Thiede, J. and Tiedemann, R., The Alternative Natural Climate Change—Do We Have to Expect a New Glacial?, in Climate of the 21st Century: Changes and Risks, Lozan, J.L., Gral, H., and Hupfer, P., Eds., Hamburg: Wissenschaftliche Auswertungen, 2001, pp. 190–195.Google Scholar
  31. Vogt, C., Zeitliche und Raumliche Verteilung von Mineral-vergesellschaftungen in Spatquartaren Sedimenten des Arktischen Ozeans und Ihre Nutzlichkeit als Klimaindikatoren Wahrend der Glazial/Interglazial-Wechsel, Ber. Polarforsch., 1997, no. 251.Google Scholar
  32. Vogt, P.R., Seafloor Topography, Sediments, and Paleoenvironments, in The Nordic Seas., Hurdle, B.G., Ed., Berlin: Springer, 1986, pp. 237–412.Google Scholar
  33. Vorren, T.O., Laberg, J.S., Blaume, F., et al., The Norwegian-Greenland Sea Continental Margins: Morphology and Late Quaternary Sedimentary Processes and Environment, Quat. Sci. Rev., 1998, vol. 17, pp. 273–302.CrossRefGoogle Scholar
  34. Weinelt, M., Vogelsang, E., Kucera, M., et al., Variability of North Atlantic Heat Transfer during MIS 2, Paleoceanography, 2003, vol. 18, no.3, p. 1071 (16.1–16.18).CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • M. A. Levitan
    • 1
  • I. O. Murdmaa
    • 2
  • E. V. Ivanova
    • 2
  • M. V. Bourtman
    • 2
  • V. V. Krupskaya
    • 1
  • N. O. Akhrimenko
    • 3
  • D. V. Eroshenko
    • 4
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Geological FacultyMoscow State UniversityMoscowRussia
  4. 4.Atlantic Division, Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia

Personalised recommendations