Lithology and Mineral Resources

, Volume 40, Issue 4, pp 364–375 | Cite as

Isotopic Composition (δ13C, δ18O) and the Origin of Carbonates from Manganese Deposits of the Southern Urals

  • V. N. Kuleshov
  • A. I. Brusnitsyn


Isotopic compositions of carbon (δ13C from −51.4 to −10.8\(\% o\) PDB) and oxygen (δ18O from 14.4 to 21.4\(\% o\) SMOW) were studied in rhodochrosite and calcite from manganese ores in the South Faizuly and Kyzyltash deposits of the southern Urals. The geological, petrographic, and isotopic data indicate that the studied carbonates are diagenetic formations. It is suggested that the main ore element (Mn) was delivered to the marine basin with hydrothermal solutions percolating in the oceanic crust. Manganese precipitated on the oceanic bottom as oxides near solution discharge zones. Manganese carbonates formed in sediments as a result of the oxidation of organic matter by manganese oxides. High biological productivity of the environment was caused by proximity to the hydrothermal vent that provided favorable biogeochemical conditions for the development of biocoenosis. Anomalously low 13C values in the South Faizuly deposit testify to the large-scale oxidation of methane in the course of manganese carbonate formation.


Manganese Calcite Isotopic Composition Oceanic Crust Hydrothermal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksiev, B., Neotocite from the Oligocene Manganese Ore Horizon of the Varna Region, Miner. Sbornik L’vov. Geol. O-va, 1960, no. 14, pp. 208–214.Google Scholar
  2. Ashley, P.M., Geochemistry and Mineralogy of Tephroite-Bearing Rocks from the Hoskins Manganese Mine, New South Wales, Australia, Neues Jahrb. Mineral. Abh., 1989, vol. 161, no.1, pp. 85–111.Google Scholar
  3. Belen’kaya, I.Yu., Influence of Hydrocarbon Gases on Authigenic Mineralization in Cold Seep Sediments, Vestn. Mos. Gos. Univ., Ser. 4: Geol., 2003, no. 3, pp. 15–21.Google Scholar
  4. Brusnitsyn, A.I., Models of Manganese Deposit Formation in the Magnitogorsk Paleovolcanic Belt, Abstracts of Papers, Materialy V Ural’skogo litologicheskogo soveshchaniya po terrigennym osadochnym posledovatel’nostyam Urala i sopredel’nykh territorii: sedimento-i litogenez, minerageniya, (V Ural Lithological Conference on Terrigenous Sedimentary Sequences of the Urals and Adjacent Territories: Sedimentogenesis, Lithogenesis, and Mineralization), Yekaterinburg: Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, 2002, pp. 36–39.Google Scholar
  5. Brusnitsyn, A.I. and Zhukov, I.G., The South Faizuly Manganese Deposit in the Southern Urals: Geology, Petrography, and Formation Conditions, Litol. Polezn. Iskop., 2005, vol. 40, no.1, pp. 35–55 [Lithol. Miner. Resour. (Engl. Transl.), 2005, vol. 40, no. 1, pp. 30–47].Google Scholar
  6. Brusnitsyn, A.I., Starikova, E.V., and Zhukov, I.G., The Kyzyltash Manganese Deposits (Southern Urals, Russia): The Devonian Prototype of a Low-temperature Hydrothermal Mound in the Modern Ocean, Geol. Rudn. Mestorozhd., 2000, vol. 42, no.3, pp. 231–247 [Geol. Ore Deposits (Engl. Transl.), 2000, vol. 42, no. 3 pp. 205–220].Google Scholar
  7. Crerar, D.A., Namson, J., Chyi, M.S., Williams, L., and Feigenson, M.D., Manganiferous Chert of the Franciscan Assemblage: I. General Geology, Ancient and Modern Analogues, and Implications for Hydrothermal Convection at Oceanic Spreading Centre, Econ. Geol., 1982, vol. 77, no.3, pp. 519–540.Google Scholar
  8. Friedman, J. and O’Neil, Y.R., Compilation of Stable Isotope Fractionation Factors of Geochemical Interest (US Geol. Surv. Prof. Pap.; 440-KK), Gov. Print. Off. Washington (D.C.), 1977.Google Scholar
  9. Hartway, J.C. and Degens, E.T., Methane-Derived Marine Carbonates of Pleistocene Age, Science, 1969, vol. 165, no.3894, pp. 690–692.Google Scholar
  10. Hein, J.R. and Koski, R.A., Bacterially Mediated Diagenetic Origin for Chert-Hosted Manganese Deposits in the Franciscan Complex, California Coast Ranges, Geology, 1987, vol. 15, no.8, pp. 722–726.Google Scholar
  11. Hovland, M., Talbot, M.R., Qvale, H., et al., Methane-Related Carbonate Cements in Pockmarks of the North Sea, J. Sedim. Petrol., 1987, vol. 57, no.5, pp. 881–892.Google Scholar
  12. Ivanov, M.B. and Lein, A.Yu., Distribution of Microorganisms and Their Role in Diagenetic Mineralization, in Geokhimiya diageneza osadkov Tikhogo okeana (Tikhookeanskii profil’) (Geochemistry of Sediment Diagenesis in the Pacific: Pacific Profile), Moscow: Nauka, 1980, pp. 117–137.Google Scholar
  13. Kalinin, V.V., Manganese and Ferromanganese Deposits on the Eastern Slope of the Southern Urals, in Margantsevye mestorozhdeniya skladchatykh oblastei SSSR (Manganese Deposits in Folded Areas of the USSR), Moscow: Nauka, 1978, pp. 55–90.Google Scholar
  14. Kheraskov, N.P., Geology and Genesis of East Bashkirian Manganese Deposits, in Voprosy litologii i stratigrafii SSSR. Pamyati akademika A.D. Arkhangel’skogo (Problems of Lithology and Stratigraphy of the USSR. In Memory of Academician A.D. Arkhangel’skii), Moscow: Akad. Nauk SSSR, 1951, pp. 328–348.Google Scholar
  15. Kontar, E.S., Savel’eva, K.P., Surganov, A.V., et al., Margantsevye mestorozhdeniya Urala (Manganese Deposits of the Urals), Yekaterinburg: OAO Ural. Geol. Eksped., 1999.Google Scholar
  16. Krasnova, N.I. and Petrov, T.G., Genezis mineral’nykh individov i agregatov (Genesis of Mineral Individuals and Aggregates), St. Petersburg: Nevskii Kur’er, 1997.Google Scholar
  17. Kuleshov, V.N., Izotopnyi sostav i proiskhozhdenie glubinnykh karbonatov (Isotopic Composition and Origin of Deep-Seated Carbonates), Moscow: Nauka, 1986.Google Scholar
  18. Kuleshov, V.N., Geokhimiya izotopov (δ 13C i δ18 O) i proiskhozhdenie karbonatnykh margantsevykh rud (Geochemistry of δ13C and δ18O Isotopes and Origin of Carbonate Manganese Ores), Moscow: Geoinformmark, 2001a.Google Scholar
  19. Kuleshov, V.N., Evolution of Isotopic Carbon Dioxide-Water Systems in Lithogenesis: Communication 1. Sedimentogenesis and Diagenesis, Litol. Polezn. Iskop., 2001b, no. 5, pp. 491–508 [Lithol. Miner. Resour. (Engl. Transl.), 2001b, no. 5, pp. 429–444].Google Scholar
  20. Kuleshov, V.N., Evolution of Isotopic Carbon Dioxide-Water Systems in Lithogenesis: Communication 2. Catagenesis, Litol. Polezn. Iskop., 2001c, no. 6, pp. 610–630 [Lithol. Miner. Resour. (Engl. Transl.), 2001c, no. 6, pp. 537–554].Google Scholar
  21. Kuleshov, V.N. and Bych, A.F., Isotopic Composition (δ13C, δ18O) and Origin Ores of the Usa Deposit (Kuznetskii Alatau), Litol. Polezn. Iskop., 2002, no. 4, pp. 381–396 [Lithol. Miner. Resour. (Engl. Transl.), 2002, no. 4, pp. 330–343].Google Scholar
  22. Lein, A.Yu., Logvinenko, N.V., Volkov, I.I., et al., Mineral and Isotopic Composition of Diagenetic Carbonate Minerals of Concretions from Reduced Sediments of the Gulf of California, Dokl. Akad. Nauk SSSR, 1975, vol. 224, no.2, pp. 426–429.Google Scholar
  23. Lein, A.Yu., Gal’chenko, V.F., Pokrovskii, B.G., et al., Marine Carbonate Concretions as Products of the Microbial Oxidation of Methane Gas Hydrate in the Sea of Okhotsk, Geokhimiya, 1989, vol. 27, no.10, pp. 1396–1406.Google Scholar
  24. Lein, A.Yu., Gorshkov, A.I., Pimenov, N.V., et al., Authigenic Carbonates in Methane Seeps from the Norwegian Sea: Mineralogy, Geochemistry, and Genesis, Litol. Polezn. Iskop., 2000a, no. 4, pp. 339–354 [Lithol. Miner. Resour. (Engl. Transl.), 2000a, no. 4, pp. 295–310].Google Scholar
  25. Lein, A.Yu., Grichuk, D.V., Gurvich, E.G., and Bogdanov, Yu.A., A New Type of Hydrogen-and Methane-Rich Hydrothermal Solutions in the Rift Zone of the Mid-Atlantic Ridge, Dokl. Akad. Nauk, 2000b, vol. 375, no.3, pp. 380–383 [Dokl. Earth Sci. (Engl. Transl.), 2000b, vol. 375A, no. 9, pp. 1391–1394].Google Scholar
  26. Mednokolchedannye mestorozhdeniya Urala: geologicheskie usloviya razmeshcheniya (Massive Copper Sulfide Deposits in the Urals: Geological Constraints), Smirnov, V.I., Ed., Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk SSSR, 1985.Google Scholar
  27. Mikhailov, B.M., Topical Problems of the Prediction of Manganese Deposits in the Urals, Litol. Polezn. Iskop., 2001, no. 1, pp. 3–15 [Lithol. Miner. Resour. (Engl. Transl.), 2001, no. 1, pp. 1–12].Google Scholar
  28. Rosenbaum, J. and Sheppard, S.M.F., An Isotopic Study of Sediments, Dolomites and Ankerites at High Temperatures, Geochim. Cosmochim. Acta, 1986, vol. 50, no.5, pp. 1147–1150.Google Scholar
  29. Seravkin, I.B., Kosarev, A.M., Salikhov, D.N., et al., Vulkanizm Yuzhnogo Urala (Volcanism of the Southern Urals), Moscow: Nauka, 1992.Google Scholar
  30. Starikova, E.V., Brusnitsyn, A.I., and Zhukov, I.G., Paleogidrotermal’naya postroika margantsevogo mestorozhdeniya Kyzyl-Tash, Yuzhnyi Ural: stroenie, sostav, genezis (Paleohydrothermal Structure of the Kyzyltash Manganese Deposit, Southern Urals: Structure, Composition, and Origin), St. Petersburg: Nauka, 2004.Google Scholar
  31. Torokhov, P.V., Taran, Yu.A., Sagalevich, A.M., et al., Isotopic Composition of Methane, Carbon Dioxide, and Carbonates in Thermal Water Springs from the Submarine Piip Volcano (Bering Sea), Dokl. Akad. Nauk SSSR, 1991, vol. 318, no.3, pp. 728–732.Google Scholar
  32. Varentsov, I.M. and Rakhmanov, V.P., Manganese Deposits, in Rudnye mestorozhdeniya SSSR (Ore Deposits of the USSR), Moscow: Nedra, 1974, vol. 1, pp. 109–167.Google Scholar
  33. Von Rad, U., Rosch, H., Berner, U., et al., Authigenic Carbonates Derived from Oxidized Methane Vented from the Makran Accretionary Prism of Pakistan, Mar. Geol., 1996, vol. 136, nos.1–2, pp. 55–77.Google Scholar
  34. Walters, L.Y., Claypool, G.E., and Choquette, P.W., Reaction Rates and δ18O Variation for the Carbonate-Phosphoric Acid Preparation Method, Geochim. Cosmochim. Acta, 1972, vol. 36, no.2, pp. 129–140.Google Scholar
  35. Zagnitko, V.N. and Lugovaya, I.P., Izotopnaya geokhimiya karbonatnykh i zhelezisto-kremnistykh porod Ukrainskogo shchita (Isotope Geochemistry of Carbonates and Ferruginous-Siliceous Rocks of the Ukrainian Shield), Kiev: Naukova Dumka, 1989.Google Scholar
  36. Zaikov, V.V., Maslennikov, V.V., Zaikova, E.V., and Kherrington, R., Rudno-formatsionnyi analiz kolchedannykh mestorozhdenii Ural’skogo paleookeana (Ore-Formation Analysis of Massive Sulfide Ore Deposits of the Ural Pale-ocean), Miass: Inst. Miner. Ural. Otd. Ross. Akad. Nauk, 2002.Google Scholar
  37. Zaikova, E.V. and Zaikov, V.V., Indications for the Benthic Hydrothermal Genesis of Ferruginous-Siliceous Structures in the Magnitogorsk-Mugodzhary Island-Arc System of the Urals, in Metallogeniya drevnikh i sovremennykh okeanov. Formirovanie i osvoenie mestorozhdenii v ostrovoduzhnykh sistemakh (Metallogeny of Ancient and Modern Oceans: Formation and Development of Ore Deposits in Island-Arc Zones), Miass: Inst. Miner. Ural. Otd. Ross. Akad. Nauk, 2003, pp. 208–215.Google Scholar
  38. Zhukov, I.G., Position of Devonian Manganiferous Rocks in the Structures of the Magnitogorsk Paleoisland-Arc System, in Metallogeniya drevnikh i sovremennykh okeanov-2002. Formirovanie i osvoenie mestorozhdenii v ofiolitovykh zonakh (Metallogeny of Ancient and Modern Oceans-2002: Formation and Development of Ore Deposits in Ophiolite Zones), Miass: Inst. Miner. Ural. Otd. Ross. Akad. Nauk, 2002, pp. 148–153.Google Scholar
  39. Zhukov, I.G. and Leonova, L.V., Benthic Fauna from a Hydrothermal Edifice in the Faizuly Low-Temperature Paleohydrothermal Deposit (Southern Urals), in Metallogeniya drevnikh i sovremennykh okeanov-99. Rudonosnost’ gidrotermal’nykh sistem (Metallogeny of Ancient and Modern Oceans-99: Ore Potential of Hydrothermal Systems), Miass: Inst. Miner. Ural. Otd. Ross. Akad. Nauk, 1999, pp. 74–79.Google Scholar
  40. Zhukov, I.G., Mizens, L.I., and Sapel’nikov, V.P., Find of Benthic Fauna in the Low-Temperature Paleohydrothermal Field of the South Faizuly Manganese Deposit (Southern Urals), in Metallogeniya drevnikh i sovremennykh okeanov-98. Rudy i genezis mestorozhdenii (Metallogeny of Ancient and Modern Oceans-98: Ores and Genesis of Deposits), Miass: Inst. Miner. Ural. Otd. Ross. Akad. Nauk, 1998, pp. 111–115.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. N. Kuleshov
    • 1
  • A. I. Brusnitsyn
    • 2
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations