Advertisement

Lithology and Mineral Resources

, Volume 40, Issue 3, pp 232–244 | Cite as

Paleoclimatic Environments of the Formation of Upper Vendian Rocks on the Belomorian-Kuloi Plateau, Southeastern White Sea Region

  • D. V. Grazhdankin
  • V. N. Podkovyrov
  • A. V. Maslov
Article

Abstract

Reconstruction of Vendian climatic conditions on the East European Craton is of principle importance for elucidation of the Ediacarian biota habitat. However, paleogeographic reconstructions for this time are largely based on fragmentary and controversial paleomagnetic data. The degree of rock maturity deduced from lithochemical indicators allowed us to identify two stages of Late Vendian sedimentation on the Belomorian-Kuloi Plateau. The first (Lyamitsa-Verkhov) stage was characterized by the delivery of immature clastic material to the basin from a provenance with arid climate. The second (Erga-Padun) stage was marked by the input of relatively mature aluminosilicate clastics from a provenance with mild humid climate. The sedimentation stages approximately coincide with replacement of the shallow-water marine environment by the fluvioalluvial environment marked by steady and intense perennial river drainage from a highland in the northeast. In the Late Vendian (since 555 Ma ago), the northeastern area of the East European Craton was influenced by humid climate.

Keywords

Humid Climate Paleomagnetic Data Clastic Material East European Craton Sedimentation Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aksenov, E.M., The Vendian of the East European Craton, Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie. Stratigrafiya i geologicheskie protsessy (The Vendian: Historical-Geological and Paleontological Evidence), vol. 2: Stratigraphy and Geological Processes, Moscow: Nauka, 1985, pp. 3–34.Google Scholar
  2. Bessonova, V.Ya., Velikanov, V.A., Keller, B.M., and Kirsanov, V.V., Vendian and Cambrian Paleogeography of the Western East European Craton: The Valdaian Epoch, Paleogeografiya i litologiya venda i kembriya zapada Vostochno-Evropeiskoi platformy (Vendian and Cambrian Paleogeography and Lithology of the Western East European Craton), Moscow: Nauka, 1980, pp. 15–24.Google Scholar
  3. Brasier, M.D., Nutrient-Enriched Waters and the Early Skeletal Fossil Record, J. Geol. Soc., 1992, vol. 149, pp. 621–629.Google Scholar
  4. Brasier, M.D., Rozanov, A.Yu., Zhuravlev, A.Yu., et al., A Carbon Isotope Reference Scale for the Lower Cambrian Succession in Siberia: Report of IGCP Project 303, Geol. Mag., 1994, vol. 131, pp. 767–783.Google Scholar
  5. Burzin, M.B., Late Vendian (Neoproterozoic III) Microbial and Algal Communities of the Russian Platform: Models of Facies-Dependent Distribution, Evolution and Reflection of Basin Development, Riv. Ital. Paleontol. Stratigr., 1996, vol. 102, pp. 307–316.Google Scholar
  6. Burzin, M.B. and Kuz’menko, Yu.T., A Detailed Stratigraphic Scheme for Vendian Rocks in the Mezen Syneclise, Aktual’nye problemy geologii goryuchikh iskopaemykh osadochnykh basseinov Evropeiskogo Severa Rossii (Topical Problems of Fossil Fuel Geology of Sedimentary Basins in the European Part of Northern Russia), Syktyvkar: Geoprint, 2000, pp. 39–40.Google Scholar
  7. Cox, R., Lowe, D.R., and Cullers, R.L., The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in Southwestern United States, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 2919–2940.Google Scholar
  8. Eneroth, E. and Svenningsen, O.M., Equatorial Baltica in the Vendian: Palaeomagnetic Data from the Sarek Dyke Swarm, Northern Swedish Caledonides, Precambrian Res., 2004, vol. 129, pp. 23–45.Google Scholar
  9. Fedonkin, M.A., The Oldest Fossil Animals in Ecological Perspective, Mem. California Acad. Sci., 1996, vol. 20, pp. 31–45.Google Scholar
  10. Fedonkin, M.A., The Origin of the Metazoa in the Light of the Proterozoic Fossil Record, Paleontol. Res., 2003, vol. 7, pp. 9–41.Google Scholar
  11. Gee, D.G., Beliakova, L., Pease, V., et al., New, Single Zircon (Pb-Evaporation) Ages from Vendian Intrusions in the Basement beneath the Pechora Basin, Northeastern Baltica, Polarforschung, 2000, vol. 68, pp. 161–170.Google Scholar
  12. Gorokhov, I. M., Siedlecka, A., Roberts, D., et al., Rb-Sr Dating of Diagenetic Illite in Neoproterozoic Shales, Varanger Peninsula, Northern Norway, Geol. Mag., 2001, vol. 138, pp. 541–562.Google Scholar
  13. Grazhdankin, D.V., Structure and Depositional Environment of the Vendian Complex in the Southeastern White Sea Region, Stratigr. Geol. Korrelyatsiya, 2003, vol. 11, no.4, pp. 3–34 [Stratigr. Geol. Correlation (Engl. Transl.), 2003, vol. 11, no. 4, pp. 313–331].Google Scholar
  14. Grazhdankin, D., Patterns of Distribution in the Ediacarian Biotas: Facies versus Biogeography and Evolution, Paleobiology, 2004, vol. 30, pp. 203–221.Google Scholar
  15. Grazhdankin, D.V. and Bronnikov, A.A., A New Locality of the Remains of the Late Vendian Soft-Bodied Organisms on the Onega Peninsula, Dokl. Akad. Nauk, 1997, vol. 357, no.6, pp. 792–796 [Dokl. Earth Sci., vol. 357A, pp. 1311–1315].Google Scholar
  16. Harnois, L., The CIW Index: A New Chemical Index of Weathering, Sediment. Geol, 1988, vol. 55, pp. 319–322.Google Scholar
  17. Hartz, E.H., Torsvik, T., Baltica Upside Down: A New Plate Tectonic Model for Rodinia and the Iapetus Ocean, Geology, 2002, vol. 30, pp. 255–258.Google Scholar
  18. Herron, M.M., Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data, J. Sediment. Petrol., 1988, vol. 58, pp. 820–829.Google Scholar
  19. Interpretatsiya geokhimicheskikh dannykh (Interpretation of Geochemical Data), Sklyarov, E.V., Ed., Moscow: Intermet Inzhin., 2001.Google Scholar
  20. Knoll, A.H. and Walter, M.R., Latest Proterozoic Stratigraphy and Earth History, Nature, 1992, vol. 356, pp. 673–678.PubMedGoogle Scholar
  21. Logan, G.A., Hayes, J.M., Hieshima, G.B., and Summons, R.E., Terminal Proterozoic Reorganization of Biogeochemical Cycles, Nature, 1995, vol. 376, pp. 53–56.PubMedGoogle Scholar
  22. Malov, A.I., Water-Rock Interaction during Geological Evolution of the Lomonosov Diamond Deposit, Geoekol. Inzhen. Geol. Gidrogeol. Geokriol., 2002, no. 1, pp. 18–27.Google Scholar
  23. Malov, A.I., Primary Composition of Vendian Rocks of the Mezen Syneclise, Dokl. Akad. Nauk, 2003, vol. 392, no.4, pp. 512–516 [Dokl. Earth Sci. (Engl. Transl.), 2003, vol. 392, no. 7, pp. 968–972].Google Scholar
  24. Malov, A.I., Water-Rock Interaction in Vendian Sandy-Clayey Deposits of the Mezen Syneclise, Litol. Polezn. Iskop., 2004, vol. 39, no.4, pp. 401–413 [Lithol. Miner. Resour. (Engl. Transl.), 2004, vol. 39, no. 4, pp. 356–365].Google Scholar
  25. Margaritz, M., Kirschvink, J.L., Latham, A.J., et al., Precambrian/Cambrian Boundary Problem: Carbon Isotope Correlations for Vendian and Tommotian Time between Siberia and Marocco, Geology, 1991, vol. 19, pp. 847–850.Google Scholar
  26. Martin, M.W., Grazhdankin, D.V., Bowring, S.A., et al., Age of Neoproterozoic Bilaterian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution, Science, 2000, vol. 288, pp. 841–845.PubMedGoogle Scholar
  27. McCormick, D.S. and Grotzinger, J.P., Distinction of Marine from Alluvial Facies in the Paleoproterozoic (1.9 GA) Burn-side Formation, Kilohigok Basin, N.W.T., Canada, J. Sediment. Petrol., 1993, vol. 63, pp. 398–419.Google Scholar
  28. Migdisov, A.A., The Titanium to Aluminum Ratio in Sedimentary Rocks, Geokhimiya, 1960, no. 2, pp. 149–163.Google Scholar
  29. Olovyanishnikov, V.G., Verkhnii dokembrii Timana i poluostova Kanin (Upper Precambrian in the Timan and the Kanin Peninsula), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1998.Google Scholar
  30. Olovyanishnikov, V.G., Roberts, D., and Siedlecka, A., Tectonics and Sedimentation of the Meso-to Neoproterozoic Timan-Varanger Belt along the Northeastern Margin of Baltica, Polarforschung, 2000, vol. 68, pp. 267–274.Google Scholar
  31. Petrovskaya, A.N., Volovikovskaya, A.I., and Volodchenkova, A.I., Late Precambrian and Cambrian Depositional Environment in the Southern Central Part of the Moscow Syneclise, Litologiya i paleogeografiya paleozoiskikh otlozhenii Russkoi platformy (Lithology and Paleogeography of Paleozoic Rocks in the Russian Platform), Moscow: Nauka, 1972, pp. 47–57.Google Scholar
  32. Pirrus, E.A., Clay Minerals in Vendian and Cambrian Rocks and Their Significance for Paleogeography and Stratigraphy, Paleogeografiya i litologiya venda i kembriya zapada Vostochno-Evropeiskoi platformy (Vendian-Cambrian Paleogeography and Lithology of the Western East European Craton), Moscow: Nauka, 1980, pp. 97–104.Google Scholar
  33. Pirrus, E.A. Freshening of the Late Vendian Basin on the East European Craton, Proc. Est. Acad. Sci. Geol., 1992, vol. 41, pp. 115–123.Google Scholar
  34. Popov, V., Iosifidi, A., Khramov, A., et al., Paleomagnetism of Upper Vendian Sediments from the Winter Coast, White Sea Region, Russia: Implications for the Paleogeography of Baltica during Neoproterozoic Times, Geophys. Res., 2002, vol. 107(B11), Art. no. 2315.Google Scholar
  35. Puchkov, V.N., Structure and Geodynamics of the Uralian Orogen, Geol. Soc. Spec. Publ., 1997, vol. 121, pp. 201–236.Google Scholar
  36. Roberts, D. and Siedlecka, A., Timanian Orogenic Deformation along the Northeastern Margin of Baltica, Northwest Russia and Northeast Norway, and Avalonian-Cadomian Connections, Tectonophysics, 2002, vol. 352, pp. 169–184.Google Scholar
  37. Shenfil, V.Yu., Problem of Skeleton Development in Oldest Organisms, Dokl. Akad. Nauk SSSR, 1983, vol. 272, no.6, pp. 1465–1468.Google Scholar
  38. Sivertseva, I.A., Upper Riphean Tuchkin Microbiota in the White Sea, Dokl. Akad. Nauk, 1993, vol. 332, no.5, pp. 621–623.Google Scholar
  39. Sochava, A.V., Korenchuk, L.V., Pirrus, E.A., and Felitsyn, S.B., Geochemistry of Upper Vendian Rocks in the Russian Platform, Litol. Polezn. Iskop., 1992, vol. 27, no.2, pp. 71–89.Google Scholar
  40. Stankovskii, A.F., Verichev, E.M., and Dobeiko, I.P., The Vendian in Southeastern White Sea Region, Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie. Stratigrafiya i geologicheskie protsessy (The Vendian: Historical-Geological and Paleontological Evidence), vol. 2: Stratigraphy and Geological Processes), Moscow: Nauka, 1985, pp. 67–76.Google Scholar
  41. Stankovskii, A.F., Verichev, E.M., Grib, V.P., and Dobeiko, I.P., The Vendian in the Southeastern White Sea Region, Izv. Akad. Nauk SSSR, Ser. Geol., 1981, no. 2, pp. 78–87.Google Scholar
  42. Stratigraficheskaya skhema vendskikh otlozhenii Moskovskoi sineklizy. Ob”yasnitel’naya zapiska (Stratigraphic Scheme of the Vendian in the Moscow Syneclise: Explanatory Note), Moscow: Inst. Geol. Razved. Goryuch. Iskop., 1996.Google Scholar
  43. Stratigraficheskaya skhema rifeiskikh i vendskikh otlozhenii Volgo-Ural’skoi oblasti. Ob”yasnitel’naya zapiska (Stratigraphic Scheme of Riphean-Vendian Rocks in the Volga-Ural Region. Explanatory Note), Ufa: Inst. Geol. Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2000.Google Scholar
  44. Tucker, M.E., The Precambrian-Cambrian Boundary: Seawater Chemistry, Ocean Circulation and Nutrient Supply in Metazoan Evolution, Extinction and Biomineralization, J. Geol. Soc., 1992, vol. 149, pp. 655–668.Google Scholar
  45. Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie. Stratigrafiya i geologicheskie protsessy (The Vendian: Historical-Geological and Paleontological Evidence), vol. 2: Stratigraphy and Geological Processes), Sokolov, B.S. and Fedonkin, M.A., Eds., Moscow: Nauka, 1985.Google Scholar
  46. Verkhnii dokembrii Evropeiskogo Severa SSSR (Ob”yasnitel’naya zapiska k skheme stratigrafii) (Upper Precambrian of the European Northern Part of the USSR: Explanatory Note to the Stratigraphic Scheme), Dedeev, V.A. and Keller, B.M., Eds., Syktyvkar: Inst. Geol. Komi Akad. Nauk SSSR, 1986.Google Scholar
  47. Visser, J.N.J. and Young, G.M., Major Element Geochemistry and Paleoclimatology of the Permo-Carboniferous Glaciogene Dwyka Formation and Post-Glacial Mudrocks in Southern Africa, Palaeogeogr. Palaeoclimat. Palaeoecol., 1990, vol. 81, pp. 49–57.Google Scholar
  48. Yakobson, K.E., Kuznetsova, M.Yu., Stankovskii, A.F., et al., The Riphean of the Winter Coast, the White Sea, Sov. Geol., 1991, no. 11, pp. 44–48.Google Scholar
  49. Yudovich, Ya.E., Regional’naya geokhimiya osadochnykh tolshch (Regional Geochemistry of Sedimentary Sequences), Leningrad: Nauka, 1981.Google Scholar
  50. Yudovich, Ya.E. and Ketris, M.P., Osnovy litokhimii (Fundamentals of Lithochemistry), St. Petersburg: Nauka, 2000.Google Scholar
  51. Yudovich, Ya.E., Gareev, E.Z., and Ketris, M.P., Nature of Anomalous Potassium Accumulations in Clayey Rocks, Geokhimiya, 1991, vol. 29, no.5, pp. 689–700.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • D. V. Grazhdankin
    • 1
  • V. N. Podkovyrov
    • 2
  • A. V. Maslov
    • 3
  1. 1.Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Zavaritsky Institute of Geology and Geochemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations