Lithology and Mineral Resources

, Volume 40, Issue 2, pp 123–137 | Cite as

Isotopic composition of oxygen and hydrogen in mud-volcanic waters from Taman (Russia) and Kakhetia (Eastern Georgia)

  • V. Yu. Lavrushin
  • E. O. Dubinina
  • A. S. Avdeenko


The δ18O and δD values in mud-volcanic waters of the Taman Peninsula and Kakhetia vary from +0.7 to +10.0‰ and from −37 to −13‰ , respectively. These values increase as the Greater Caucasus is approached. The increase in δ18O and δD also positively correlates with fluid generation temperatures based on hydrochemical geothermometers. This is accompanied by changes in the chemical composition of waters, in which contents of alkali metals, HCO3 ion, and boron increase, while the content of halogen ions (Cl, Br, J) decreases. Changes in the isotopic composition of water are also accompanied by the increase of δ13 in methane and decrease of δ11 B in clays. Analysis of formal models of the evolution of isotopic composition of mud-volcanic waters showed that mud volcanoes are recharged by freshened water from the Maikop paleobasin with an inferred isotopic composition of δD ≈ −40‰ and δ18 O ≈ −6‰. Based on this assumption, the δ18O and δD values observed in mud-volcanic waters can be explained not only by processes of distillation and condensation in a closed system, but also by combined processes of isotopic reequilibration in the water-illite-methane system.


Oxygen Hydrogen Clay Methane Boron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avdeenko, A.S. and Dubinina, E.O., Isotopic Analysis of Water Oxygen by Balancing with CO2 in Disposable Syringes, in Abstracts of Papers, XVI simpozium po geokhimii stabil’nykh izotopov im. A.P. Vinogradova (XVI Symposium on Stable Isotope Geochemistry in Memory of A.P. Vinogradov), Moscow, 2001.Google Scholar
  2. Bottinga, Y., Calculated Fractionation Factors for Carbon and Hydrogen Isotope Exchange in the System Calcite-CO2-Graphite-Methane-Hydrogen and Water Vapor, Geochim. Cosmochim. Acta., 1969, vol. 33, pp. 49–64.Google Scholar
  3. Braunstein, G. and O’Brien, G.D., Diapirism and Diapirs, Am. Assoc. Pet. Geol., 1968, vol. 8, pp. 385–414.Google Scholar
  4. Erokhin, V.E. and Titkov, G.A., First Results of the Analysis of Hydrogen Isotopic Composition of Methane in Gases from Mud Volcanoes in Azerbaijan and Turkmenistan, Dokl. Akad. Nauk SSSR, 1982, vol. 262, no.3, pp. 715–717.Google Scholar
  5. Esikov, A.D., Genesis of Waters from Mud Volcanoes in the Light of Isotopic-Geochemical Criterions, in Abstracts of Papers, XIV simpozium po geokhimii izotopov (XIV Symposium on Isotope Geochemistry), Moscow, 1995.Google Scholar
  6. Esikov, A.D., Erokhin, V.E., Chernikova, N.S., and Cheshko, A.L., Genesis of Waters from Mud Volcanoes in Southwestern Turkmenistan Based on Hydrogen Isotopic Composition Data, Izotopnye issledovaniya prirodnykh vod (Isotopic Study of Natural Waters), Moscow: Nauka, 1979, pp. 70–73.Google Scholar
  7. Eslinger, E.V., Savin, S.M., and Yeh, H., Oxygen Isotope Geothermometry of Diagenetically Altered Shales, SEPM Spec. Publ., 1979, vol. 26, pp. 113–124.Google Scholar
  8. Fedorov, Yu.A., Hydrogen and Oxygen Isotopic Compositions of Groundwaters and Lithological Composition of Reservoirs: Evidence from the Northern Caucasus, Geokhimiya, 1989, vol. 27, no.9, pp. 1359–1363.Google Scholar
  9. Fedorov, Yu.A., Evolution of Isotopic and Chemical Compositions of Groundwater and Lithogenesis, Rol’ podzemnoi gidrosfery v istorii Zemli (Role of the Subsurface Hydrosphere in the Earth’s History), Moscow: Nedra, 1990, pp. 104–115.Google Scholar
  10. Fouillac, C. and Michard, G., Sodium/Lithium Ratio in Water Applied to Geothermometry of Geothermal Reservoirs, Geochemics, 1981, vol. 10, pp. 55–70.Google Scholar
  11. Fournier, R.O. and Potter, R.W., II., A Magnesium Correction for the Na-K-Ca Geothermometer, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 1543–1550.Google Scholar
  12. Fournier, R.O. and Trusdell, A.H., An Empirical Na-K-Ca Chemical Geothermometer for Natural Waters, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 1255–1275.Google Scholar
  13. Galimov, E.M., Geokhimiya stabil’nykh izotopov ugleroda (Geochemistry of Stable Carbon Isotopes), Moscow: Nedra, 1968.Google Scholar
  14. Gemp, S.D., Dubrova, N.V., Nesmelova, Z.N., Beketov, V.M., and Khod’kova, I.A., Carbon Isotopic Composition of Carbon-Bearing Gases (CH4 and CO2) from Mud Volcanoes in the Kerch-Taman Region, Geokhimiya, 1970, vol. 8, no.2, pp. 243–247.Google Scholar
  15. Gubkin, I.M. and Fedorov, S.F., Gryazevye vulkany Sovetskogo Soyuza i ikh svyaz’ s genezisom neftyanykh mestorozhdenii Krymsko-Kavkazskoi geologicheskoi provintsii (Mud Volcanoes in the USSR and Their Relation to the Genesis of Oil Fields in the Crimea-Caucasus Geological Province), Moscow: Izd. Akad. Nauk SSSR, 1938.Google Scholar
  16. Hoefs, J., Stable Isotope Geochemistry, New York: Springer, 2004.Google Scholar
  17. Horita, J. and Wesolowski, D.J., Liquid-Vapor Fractionation of Oxygen and Hydrogen Isotopes of Water from the Freezing to the Critical Temperature, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 3425–3437.Google Scholar
  18. Kharaka, Y.K. and Marner, R.H., Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins, Thermal History of Sedimentary Basins, Methods and Case Histories, New York: Springer, 1989, pp. 99–117.Google Scholar
  19. Kholodov, V.N., Mud Volcanoes: Distribution Regularities and Genesis. Communication 2: Geological-Geochemical Peculiarities and Formation Model, Litol. Polezn. Iskop., 2002, vol. 37, no.4, pp. 339–358 [Lithol. Miner. Resour. (Engl. Transl.), 2002, vol. 37, no. 4, pp. 293-309].Google Scholar
  20. Kollodii, V.V., Nature and Origin of Waters in Mud Volcanoes, Proiskhozhdenie nefti i gaza i formirovanie ikh promyshlennykh zalezhei (Origin of Oil and Gas and Formation of Their Commercial Pools), Kiev: Naukova Dumka, 1971, pp. 317–339.Google Scholar
  21. Kopf, A., Significance of Mud Volcanism, Reviews Geophys., 2002, vol. 40, pp. B-1–B-49.Google Scholar
  22. Kovalevskii, S.A., Gryazevye vulkany Yuzhno-Kaspiiskogo regiona (Azerbaidzhan i Turkmeniya) (Mud Volcanoes in the South Caspian Region: Azerbaijan and Turkmenia), Baku: Aztoptekhizdat, 1940.Google Scholar
  23. Krasintseva, V.V., Gidrogeokhimiya khlora i broma (Hydrogeochemistry of Chlorine and Bromine), Moscow: Nauka, 1968.Google Scholar
  24. Kryukov, P.A., Zhuchkova, A.A., and Rengarten, E.V., Composition Variations of Solutions Expelled from Clays and Ion-Exchange Resins, Dokl. Akad. Nauk SSSR, 1962, vol. 144, no.6, pp. 1363–1365.Google Scholar
  25. Kurbanov, M.K., Geotermal’nye i gidromineral’nye resursy Vostochnogo Kavkaza i Predkavkaz’ya (Geothermal and Hydromineral Water Resources of the Eastern Caucasus and Ciscaucasus), Moscow: Nauka, 2001.Google Scholar
  26. Kurishko, V.A., Mesyats, I.A., and Terdovidov, A.S., Hydrogeology of Mud Volcanism in the Kerch Peninsula, Geol. Zh. Akad. Nauk USSR, 1968, vol. 28, no.1, pp. 49–59.Google Scholar
  27. Lavrushin, V.Yu., Polyak, B.G., Prasolov, E.M., and Kamenskii, I.L., Sources of Material in Mud-Volcanic Products (Based on Isotopic, Hydrochemical, and Geological Data), Litol. Polezn. Iskop., 1996, no. 6, pp. 625–647 [Lithol. Miner. Resour. (Engl. Transl.), 1996, vol. 31, no. 6, pp. 557-578].Google Scholar
  28. Lavrushin, V.Yu., Polyak, B.G., Pokrovskii, B.G., Buachidze, G.I., and Kamenskii, I.L., New Data on Helium and Carbon Isotopes in Gases from Mud Volcanoes of Eastern Georgia, in Abstracts of Papers. XV simpozium po geokhimii izotopov imeni ak. A.P. Vinogradova (XV Symposium on Isotope Geochemistry in Memory of Academician A.P. Vinogradov), Moscow, 1998, pp. 151–152.Google Scholar
  29. Lavrushin, V.Yu., Kopf, A., Deyhle, A., and Stepanets, M.I., Formation of Mud-Volcanic Fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from Boron Isotopes, [Litol. Polezn. Iskop., 2003, no. 2, pp. 147–182 [Lithol. Miner. Resour. (Engl. Transl.), 2003, vol. 38, no. 2, pp. 120-153].Google Scholar
  30. Majoube, M., Fractionnement en oxygen-18 et en deuterium entre l’eau et sa vapeur, J. Chem. Phys., 1971, vol. 68, pp. 1423–1436.Google Scholar
  31. Nikanorov, A.M., Tarasov, M.G., and Fedorov, Yu.A., Analysis of Stable Isotope Variations in Natural Waters of the Ciscaucasus in Connection with the Origin of Their Chemical Composition, in Abstracts of Papers. Vse-soyuzn. simpozium po izotopam v gidrosfere, Tallinn (All-Union Conference on Isotopes in the Hydrosphere, Tal-lin), 1981, pp. 137–139.Google Scholar
  32. Popov, V.G. and Abdrakhmanov, R.F., Gidrogeokhimiya obmenno-adsorbtsionnykh protsessov (Hydrogeochemistry of Exchange-Adsorption Processes), Ufa: Bashkir. Nauchn. Tsentr Ural. Otd. Akad. Nauk SSSR, 1990.Google Scholar
  33. Prasolov, E.M., Izotopnaya geokhimiya i proiskhozhdenie prirodnykh gazov (Isotope Geochemistry and Genesis of Natural Gases), Leningrad: Nedra, 1990.Google Scholar
  34. Rakhmanov, R.R., Gryazevye vulkany i ikh znachenie v prognozirovanii neftegazonosti nedr (Mud Volcanoes and Their Significance for Predicting Oil and Gas Potential in the Earth’s Interior), Moscow: Nedra, 1987.Google Scholar
  35. Seletskii, Yu.B., Deuterium and Oxygen-18 as Indicators of the Origin of Waters in Mud Volcanoes, Izv. Akad. Nauk SSSR, Ser. Geol., 1991, no.5, pp. 133–138.Google Scholar
  36. Seletskii, Yu.B., Polyakov, V.A., Yakubovskii, A.V., and Isaev, N.V., Deiterii i kislorod-18 v podzemnykh vodakh (Deuterium and Oxygen-18 in Groundwaters), Moscow: Nedra, 1973.Google Scholar
  37. Sheppard, S.M.F., Characterization and Isotopic Variations in Natural Waters, Reviews Mineral., 1986, vol. 16, pp. 165–184.Google Scholar
  38. Shnyukov, E.F., Sobolevskii, Yu.V., Gnatenko, G.I., Naumenko, P.I., and Kutnii, V.A., Gryazevye vulkany Kerchensko-Tamanskoi oblasti (atlas) (Mud Volcanoes in the Kerch-Taman Region: An Atlas), Kiev: Naukova Dumka, 1986.Google Scholar
  39. Valyaev, B.M., Grinchenko, Yu.I., Erokhin, V.E., Prokhorov, V.S., and Titkov, G.A., Isotopic Composition of Gases from Mud Volcanoes, Litol. Polez. Iskop. 1985, vol. 20, no.1, pp. 72–87.Google Scholar
  40. Vetshtein, V.E., Izotopy kisloroda i vodoroda prirodnykh vod SSSR (Oxygen and Hydrogen Isotopes in Natural Waters of the USSR), Leningrad: Nedra, 1982.Google Scholar
  41. Voitov, G.I., Chemical and Carbon Isotope Instabilities in Gryphon Gases of Mud Volcanoes: An Example of the Southern Caspian and Taman Mud-Volcanic Province, Geokhimiya, 2001, vol. 39, no.4, pp. 422–433 [Geochem. Int. (Engl. Transl.) 2001, vol. 39, no. 4, pp. 373–383].Google Scholar
  42. Williams, L.B., Hervig, R.L., and Hutcheon, I., Boron Isotope Geochemistry during Diagenesis. Part II: Applications to Organic-Rich Sediments, Geochim. Cosmochim. Acta, 2001, vol. 65, no.11, pp. 1783–1794.Google Scholar
  43. Yakubov, A.A., Grigor’yants, B.V., Aliev, A.D., et al., Gryazevoi vulkanizm Sovetskogo Soyuza i ego svyaz’ s neftegazonosnost’yu (Mud Volcanism in the Soviet Union and Its Implication for Petroleum Potential), Baku: ELM, 1980.Google Scholar
  44. Zhishchenko, B.I., Metody stratigraficheskikh issledovanii neftegazonosnykh oblastei (Methods for the Stratigraphic Investigation of Oil and Gas Regions), Moscow: Nauka, 1969.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. Yu. Lavrushin
    • 1
  • E. O. Dubinina
    • 2
  • A. S. Avdeenko
    • 2
  1. 1.Geological Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations