Skip to main content
Log in

Second moment of the Beurling zeta-function

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the second moment of the Beurling zeta-function and of its reciprocal (mainly on σ = 1). Along the way, we study moments of more general Dirichlet series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Cai, Prime geodesic theorem, J. Théor. Nombres Bordx., 14(1):59–72, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Carlson, Contributions à la théorie des séries de Dirichlet. Note I, Ark. Mat. Astron. Fys., 16(18):19, 1922.

    MATH  Google Scholar 

  3. H.G. Diamond, H.L. Montgomery, and U.M.A. Vorhauer, Beurling primes with large oscillation, Math. Ann., 334(1):1–36, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Drungilas, R. Garunkštis, and A. Kaˇc˙enas, Universality of the Selberg zeta-function for the modular group, Forum Math., 25(3):533–564, 2013.

    MathSciNet  MATH  Google Scholar 

  5. R. Garunkštis, A. Laurinˇcikas, and J. Steuding, On the mean square of Lerch zeta-functions, Arch. Math., 80(1):47–60, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  6. G.H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Camb. Tracts Math. Math. Phys., No. 18, Stechert-Hafner, New York, 1964.

  7. D.A. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. 2, Lect. Notes Math., Vol. 1001, Springer, Berlin, 1983.

  8. T.W. Hilberdink, Ω-results for Beurling’s zeta function and lower bounds for the generalised Dirichlet divisor problem, J. Number Theory, 130(3):707–715, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  9. T.W. Hilberdink and M.L. Lapidus, Beurling zeta functions, generalised primes, and fractal membranes, Acta Appl. Math., 94(1):21–48, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Ivić, The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications, Pure Appl. Math.,Wiley-Intersci. Ser. Texts Monogr. Tracts, John Wiley & Sons, New York, 1985.

  11. H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math., 349:136–159, 1984.

    MathSciNet  MATH  Google Scholar 

  12. D. Klusch, Asymptotic equalities for the Lipschitz–Lerch zeta-function, Arch. Math., 49:38–43, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Landau, Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes, Math. Ann., 56:645–670, 1903.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. II, Teubner, Leipzig, Berlin, 1909.

    MATH  Google Scholar 

  15. W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal., 5(2):387–401, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Matsumoto, Recent developments in the mean square theory of the Riemann zeta and other zeta-functions, in R.P. Bambah, V.C Dumir, and R.J. Hans-Gill (Eds.), Number Theory, Trends Math., pp. 241–286, Birkhäuser, Basel, 2000.

  17. Y. Motohashi, A note on the mean value of the Dedekind zeta-function of the quadratic field, Math. Ann., 188:123–127, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  18. H.S.A. Potter, The mean values of certain Dirichlet series. 1, Proc. Lond. Math. Soc. (2), 46:467–478, 1940.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Prachar, Primzahlverteilung, GrundlehrenMath. Wiss., Vol. 91, Springer, Berlin, 1957.

  20. V.V. Rane, On the mean square value of Dirichlet L-series, J. Lond. Math. Soc., II. Ser., 21:203–215, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Soundararajan and M.P. Young, The prime geodesic theorem, J. Reine Angew. Math., 676:105–120, 2013.

  22. J. Steuding, Value distribution of L-functions, Lect. Notes Math., Vol. 1877, Springer, Berlin, 2007.

  23. E.C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, Oxford, 1939.

    MATH  Google Scholar 

  24. E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. rev. by D.R. Heath-Brown, Clarendon Press, Oxford, 1986.

  25. S.M. Voronin, A theorem on the distribution of values of the Riemann zeta-function, Sov. Math., Dokl., 16:410, 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulius Drungilas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first two authors were supported by a grant No. MIP-049/2014 from the Research Council of Lithuania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drungilas, P., Garunkštis, R. & Novikas, A. Second moment of the Beurling zeta-function. Lith Math J 59, 317–337 (2019). https://doi.org/10.1007/s10986-019-09439-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-019-09439-8

MSC

Keywords

Navigation