Lithuanian Mathematical Journal

, Volume 58, Issue 2, pp 198–211 | Cite as

On the uniform distribution of zero ordinates of Epstein zeta-functions

  • Christof Schmeller


Let \( \zeta \left(s;\mathcal{Q}\right) \) be the Epstein zeta-function associated with an integral quadratic form \( \mathcal{Q}\left[y\right]={\mathrm{y}}^{\mathrm{t}}\mathcal{Q}\mathrm{y} \) for y ϵ ℤ n with nontrivial zeros ρ = β + iy. We prove that \( {\Sigma}_{\left[\upgamma \right]<{T}^{X^{\rho }}}={c}_xT+O\left(\log T\right) \) for all Epstein zeta functions analogously to Landau’s explicit formula in the case of the Riemann zeta function. It follows that under the assumption \( {\Sigma}_{\left[\upgamma \right]<T}\left|\beta -n/4\right|=o\left(N\left(T;\mathcal{Q}\right)\right), \) where \( N\left(T;\mathcal{Q}\right) \) counts the nontrivial zeros for |γ| < T, the ordinates of Epstein zeta zeros are uniformly distributed modulo one.


Epstein zeta function nontrivial zeros uniform distribution 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bombieri and D.A. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J., 80(3):821–862, 1995.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices, and Groups, 2nd ed., Springer, New York, 1993.CrossRefMATHGoogle Scholar
  3. 3.
    H. Davenport and H. Heilbronn, On the zeros of certain Dirichlet series, J. Lond. Math. Soc., II(3):181–185, 1936.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    H. Davenport and H. Heilbronn, On the zeros of certain Dirichlet series (Second paper), J. Lond. Math. Soc, II(4): 307–312, 1936.CrossRefMATHGoogle Scholar
  5. 5.
    P. Epstein, Zur Theorie allgemeiner Zetafunctionen, Math. Ann., 56:615–644, 1903.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    R. Garunkštis, J. Steuding, and R. Šimėnas, The a-points of the Selberg zeta-function are uniformly distributed modulo one, Ill. J. Math., 58(1):207–218, 2014.MathSciNetMATHGoogle Scholar
  7. 7.
    F. Halter-Koch, Quadratic Irrationals: An Introduction to Classical Number Theory, CRC Press, Boca Raton, FL, 2013.CrossRefMATHGoogle Scholar
  8. 8.
    D.A. Hejhal, Zeros of Epstein zeta functions and supercomputers, Proc. Int. Congr. Math., Berkeley/Calif., 2:1362–1384, 1986.Google Scholar
  9. 9.
    A.A. Karatsuba and S.M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin, 1992.CrossRefMATHGoogle Scholar
  10. 10.
    M. Koecher and A. Krieg, Elliptische Funktionen und Modulformen, Springer, Berlin, Heidelberg, 1998.CrossRefMATHGoogle Scholar
  11. 11.
    E. Landau, Über die Nullstellen der Zetafunktion, Math. Ann., 71:548–564, 1912.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    E. Landau, Über den Wertevorrat von ζ(s) in der Halbebene ρ > 1, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 36:81–91, 1933.MATHGoogle Scholar
  13. 13.
    N. Levinson, Almost all roots of ζ(s) = a are arbitrarily close to σ = 1/2, Proc. Natl. Acad. Sci. USA., 72:1322–1324, 1975.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    I.S. Rezvyakova, On the zeros of the Epstein zeta-function on the critical line, Russ. Math. Surv., 70(4):785–787, 2015.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    J. Steuding, On the value-distribution of Epstein zeta-functions, Publ. Mat., Proceedings of the Primeras Jornadas de Teoría de Números, Spec. Vol.:221–242, 2005.Google Scholar
  16. 16.
    J. Steuding, On the zero-distribution of Epstein zeta-functions, Math. Ann., 333:689–697, 2005.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    J. Steuding, The roots of the equation ζ(s) = a are uniformly distributed modulo one, in A. Laurinˇcikas, E. Manstavičius, and G. Stepanauskas (Eds.), Analytic and Probabilistic Methods in Number Theory. Proceedings of the 5th International Conference in Honour of J. Kubilius, Palanga, Lithuania, September 4–10, 2011, TEV, Vilnius, 2011, pp. 243–249.Google Scholar
  18. 18.
    J. Steuding, One hundred years uniform distribution modulo one and recent applications to Riemann’s zeta function, in Rassias T. and Tóth L. (Eds.), Topics in Mathematical Analysis and Applications, Springer Optim. Appl., Vol. 94, Springer, Cham, 2014, pp. 659–698.Google Scholar
  19. 19.
    H. Weyl, Sur une application de la théorie des nombres à la mécanique statistique et la théorie des perturbations, Enseign. Math, 16:455–467, 1914.MATHGoogle Scholar
  20. 20.
    H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77:313–352, 1916.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christof Schmeller
    • 1
  1. 1.ReinheimGermany

Personalised recommendations