Advertisement

Lithuanian Mathematical Journal

, Volume 58, Issue 2, pp 249–262 | Cite as

Value distribution of L-functions and uniqueness questions of F. Gross*

Article
  • 21 Downloads

Abstract

We study the value distribution of L-functions and uniqueness questions of meromorphic functions sharing one or two sets with L-functions. The results in this paper extend the corresponding results from [J. Steuding, Value Distribution of L-Functions, Lect. Notes Math., Vol. 1877, Springer-Verlag, Berlin, Heidelberg, 2007, p. 152] and [B.Q. Li, A result on value distribution of L-functions, Proc. Am. Math. Soc., 138(6):2071–2077, 2010]. The studied questions in this paper are related to the questions of Gross from [F. Gross, Factorization of meromorphic functions and some open problems, in Complex Analysis, Kentucky 1976. Proceedings of the Conference Held at the University of Kentucky, May 18–22, 1976, Lect. Notes Math., Vol. 599, Springer-Verlag, Berlin, Heidelberg, 1977, pp. 51–69]. Here the meromorphic functions are of finitely many poles in the complex plane.

Keywords

Nevanlinna theory meromorphic functions L-functions shared sets uniqueness theorems 

MSC

primary 11M36 secondary 30D35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ahlfors, Complex Analysis, McGraw Hill, New York, 1979.MATHGoogle Scholar
  2. 2.
    E. Bombieri and A. Perelli, Distinct zeros of L-functions, Acta Arith., 83(3):271–281, 1998.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7:5–31, 1933.MATHGoogle Scholar
  4. 4.
    F. Gross, Factorization of meromorphic functions and some open problems, in Complex Analysis, Kentucky 1976. Proceedings of the Conference Held at the University of Kentucky, May 18–22, 1976, Lect. Notes Math., Vol. 599, Springer-Verlag, Berlin, Heidelberg, 5–69, 1977.Google Scholar
  5. 5.
    G.G. Gundersen and W.K. Hayman, The strength of Cartan’s version of Nevanlinna theory, Bull. Lond. Math. Soc., 36(4):433–454, 2004.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  7. 7.
    P.C. Hu and B.Q. Li, A simple proof and strengthening of a uniqueness theorem for L-functions, Can. Math. Bull., 59(1):119–122, 2016.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.CrossRefMATHGoogle Scholar
  9. 9.
    B.Q. Li, A result on value distribution of L-functions, Proc. Am. Math. Soc., 138(6):2071–2077, 2010.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    P. Li and C.C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 18(3):437–450, 1995.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    X.M. Li and H.X. Yi, Meromorphic functions sharing three values, J. Math. Soc. Japan, 56(1):147–167, 2004.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A.Z. Mokhon’ko, On the Nevanlinna characteristics of some meromorphic functions, Teor. Funkts. Funkts. Anal. Prilozh., 14:83–87, 1971 (in Russian).Google Scholar
  13. 13.
    R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48(3–4):367–391, 1926.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in E. Bombieri, A. Perelli, S. Salerno, and U. Zannier (Eds.), Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Vol. II, Univ. Salerno, Salerno, 1992, pp. 47–63.Google Scholar
  15. 15.
    J. Steuding, Value distribution of L-functions, Lect. Notes Math., Vol. 1877, Springer-Verlag, Berlin, 2007.Google Scholar
  16. 16.
    C.C. Yang and H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.CrossRefMATHGoogle Scholar
  17. 17.
    L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, Heidelberg, 1993.MATHGoogle Scholar
  18. 18.
    H.X. Yi, Uniqueness of meromorphic functions and a question of Gross, Sci. China, Ser. A, 37(7):802–813, 1994.MathSciNetMATHGoogle Scholar
  19. 19.
    H.X. Yi, On a question of Gross, Sci. China, Ser. A, 38(1):8–16, 1995.MathSciNetMATHGoogle Scholar
  20. 20.
    Q.C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl. Math., 30(7):667–682, 1999.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsOcean University of ChinaQingdaoChina
  2. 2.Department of MathematicsShandong UniversityJinanChina

Personalised recommendations