Lithuanian Mathematical Journal

, Volume 58, Issue 1, pp 1–14 | Cite as

On some hybrid power moments of products of generalized quadratic Gauss sums and Kloosterman sums*

  • Goran Djanković
  • Dragan Ðokić
  • Nikola Lelas
  • Ilija Vrećica


In this paper, we investigate hybrid power moments of generalized quadratic Gauss sums weighted with powers of Kloosterman sums and with powers of values of Dirichlet L-functions at 1. We obtain several exact formulas for prime and prime power modulus and some asymptotic formulas.


generalized quadratic Gauss sums Kloosterman sums hybrid power mean values Dirichlet L-functions 


primary 11L05, 11T24 secondary 11M20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloq. Publ., Am.Math. Soc., Vol. 53, AMS, Providence, RI, 2004.Google Scholar
  2. 2.
    S. Kanemitsu, Y. Tanigawa, M. Yoshimoto, and W. Zhang, On the discrete mean square of the Dirichlet L-functions at 1, Math. Z., 248(1):21–44, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    X. Lv and W. Zhang, A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous to Kloosterman sums, Lith. Math. J., 57(3):359–366, 2017.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H. Montgomery and R. Vaughan, Multiplicative Number Theory I. Classical Theory, Camb. Stud. Adv. Math., Vol. 97, Cambridge Univ. Press, Cambridge, 2006.Google Scholar
  5. 5.
    S. Walum, An exact formula for an average of L-series, Ill. J. Math., 26:1–3, 1982.MathSciNetzbMATHGoogle Scholar
  6. 6.
    W. Zhang, Moments of generalized quadratic Gauss sums weighted by L-functions, J. Number Theory, 92(2):304–314, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    W. Zhang and R. Duan, On the mean square value of L-functions with the weight of quadratic Gauss sums, J. Number Theory, 179:77–87, 2017.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    W. Zhang, Y. Yi, and X. He, On the 2k-th power mean of Dirichlet L-functionswith the weight of general Kloosterman sums, J. Number Theory, 84(2):199–213, 2000.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Goran Djanković
    • 1
  • Dragan Ðokić
    • 1
  • Nikola Lelas
    • 1
  • Ilija Vrećica
    • 1
  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations