Lithuanian Mathematical Journal

, Volume 58, Issue 1, pp 69–74 | Cite as

A note on characteristic functions and their extensions

  • Saulius Norvidas


Let f : ℝ ℂ be the characteristic function of a probability measure. We study the following question: Is it true that for any closed interval I on ℝ that does not contain the origin, there exists a characteristic function g coinciding with f on I but not on the whole ℝ?


characteristic function density function entire function of exponential type probability measure 


30D15 42A38 42A82 60E10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Benedetto and G. Zimmermann, Sampling multipliers and the Poisson summation formula, J. Fourier Anal. Appl., 3(5):505–523, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G.B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed., John Wiley & Sons, New York, 1999.zbMATHGoogle Scholar
  3. 3.
    J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Clarendon Press, Oxford, 1996.zbMATHGoogle Scholar
  4. 4.
    J.R. Higgins, G. Schmeisser, and J. Voss, The sampling theorem and several equivalent results in analysis, J. Comput. Anal. Appl., 2:333–371, 2000.MathSciNetzbMATHGoogle Scholar
  5. 5.
    B.Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., Vol. 150, AMS, Providence, RI, 1996.Google Scholar
  6. 6.
    S. Norvidas, On extensions of characteristic functions, Lith. Math. J., 57(2):236–243, 2017.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N.G. Ushakov, Selected Topics in Characteristic Functions, VSP, Utrecht, 1999.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations