Lithuanian Mathematical Journal

, Volume 53, Issue 1, pp 40–62 | Cite as

Complete asymptotic analysis of positive solutions of odd-order nonlinear differential equation



We study the asymptotic behavior of solutions of the odd-order differential equation of Emden–Fowler type
$$ {x^{{\left( {2n+1} \right)}}}(t)=q(t){{\left| {x(t)} \right|}^{\gamma }}\operatorname{sgn}x(t) $$
in the framework of regular variation under the assumptions that 0 < γ < 1 and q(t) : [a, ∞) → (0, ∞) is regularly varying function. We show that complete and accurate information can be acquired about the existence of all possible positive solutions and their asymptotic behavior at infinity.


odd-order differential equation intermediate solution strongly increasing solution regularly varying function slowly varying function asymptotic behavior of solutions 


34C11 26A12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Encycl. Math. Appl., Vol. 27, Cambridge Univ. Press, Cambridge, 1987.MATHGoogle Scholar
  2. 2.
    O. Haupt and G. Aumann, Differential- und Integralrechnung, Walter de Gruyter, Berlin, 1938.MATHGoogle Scholar
  3. 3.
    J. Jaroš, T. Kusano, and T. Tanigawa, Nonoscillation theory for second-order half-linear differential equations in the framework of regular variation, Result. Math., 43:129–149, 2003.MATHGoogle Scholar
  4. 4.
    J. Jaroš, T. Kusano, and T. Tanigawa, Nonoscillatory half-linear differential equations and generalized Karamata functions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 64:762–787, 2006.MATHCrossRefGoogle Scholar
  5. 5.
    I.T. Kiguradze, On the oscillation of solutions of the equation dm u/dt m+a(t)|u|n sign u = 0, Mat. Sb., 65:172–187, 1964 (in Russian).MathSciNetGoogle Scholar
  6. 6.
    I.T. Kiguradze and T.A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Academic, Dordrecht, 1993.MATHCrossRefGoogle Scholar
  7. 7.
    T. Kusano and J. Manojlović, Asymptotic analysis of Emden–Fowler differential equations in the framework of regular variation, Ann. Mat. Pura Appl. (4), 190(4):619–644, 2011, doi: 10.1007/s10231-010-0166-x.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    T. Kusano and J. Manojlović, Asymptotic behavior of positive solutions of sublinear differential equations of Emden–Fowler type, Comput. Math. Appl., 62:551–565, 2011.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    T. Kusano, J. Manojlović, and V. Marić, Increasing solutions of Thomas–Fermi-type differential equations – the sublinear case, Bull., Cl. Sci. Math. Nat., Sci. Math., CXLIII(36):21–36, 2011.Google Scholar
  10. 10.
    T. Kusano, V. Marić, and T. Tanigawa, Regularly varying solutions of generalized Thomas–Fermi equations, Bull., Cl. Sci. Math. Nat., Sci. Math., CXXXIX(34):43–73, 2009.Google Scholar
  11. 11.
    T. Kusano and M. Naito, Unbounded nonoscillatory solutions of nonlinear ordinary differential equations of arbitrary order, Hiroshima Math. J., 18:361–372, 1988.MathSciNetMATHGoogle Scholar
  12. 12.
    V. Marić, Regular Variation and Differential Equations, Lect. Notes Math., Vol. 1726, Springer-Verlag, Berlin, Heidelberg, 2000.MATHGoogle Scholar
  13. 13.
    A.E. Taylor, L’Hospital’s rule, Am. Math. Mon., 59(1):20–24, 1952.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Mathematics, Faculty of Science and MathematicsUniversity of NišNišSerbia

Personalised recommendations