Lithuanian Mathematical Journal

, Volume 50, Issue 1, pp 43–53 | Cite as

On multiplicative functions on consecutive integers

  • L. Germán
  • I. Kátai


Let f and g be multiplicative functions of modulus 1. Assume that \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {f(n)} } \right| = A > 0 \) and \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {g(n)} } \right| = 0 \). We prove that, under these conditions,
$$ \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)g(n + 1) = 0.}$$
Concerning the Liouville function λ, we find an upper estimate for \( \frac{1}{x}\left| {\sum\limits_{n \leqslant x} {\lambda (n)\lambda (n + 1)} } \right| \) under the unproved hypothesis that L(s, χ) have Siegel zeros for an infinite sequence of L-functions.


consecutive integers mean value Liouville function 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Davenport, Multiplicative Number Theory, 3rd edition, Springer-Verlag, New York, Berlin, Heidelberg, 2000.MATHGoogle Scholar
  2. 2.
    P.D.T.A. Elliott, Probabilistic Number Theory, I, Springer-Verlag, New York, Heidelberg, Berlin, 1979.MATHGoogle Scholar
  3. 3.
    G. Harman, J. Pintz, and D. Wolke, A note on the Mobius and Liouville functions, Stud. Sci. Math. Hung., 20:295–299, 1985.MATHMathSciNetGoogle Scholar
  4. 4.
    D.R. Heath-Brown, Prime twins and Siegel zeros, Proc. Lond. Math. Soc., 47(3):193–224, 1983.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Hildebrand, An Erdős–Wintner theorem for differences of additive functions, Trans. Am. Math. Soc., 31(1):257–276, 1988.CrossRefMathSciNetGoogle Scholar
  6. 6.
    I. Katai, On the distribution of arithmetical functions, Acta Math. Acad. Sci. Hung., 20:69–87, 1969.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Kubilius, Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc., Providence, RI, 1964.MATHGoogle Scholar
  8. 8.
    J. Šiaulys and G. Stepanauskas, On the mean value of the product of multiplicative functions with shifted argument, Monatsh. Math., 150:343–351, 2007.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Stepanauskas, The mean values of multiplicative functions, II, Lith. Math. J., 37:162–170, 1997.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. Stepanauskas, The mean values of multiplicative functions, I, Ann. Univ. Sci. Budap. Sect. Comput., 18:175–186,1999.MATHMathSciNetGoogle Scholar
  11. 11.
    N.M. Timofeev, The bound of sums of multiplicative functions with shifted arguments, Math. Notes, 54(5):1138–1146, 1993.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Faculty of Computer Science, Electrical Engineering and MathematicsUniversity of PaderbornPaderbornGermany
  2. 2.Computer Algebra DepartmentEötvös Loránd UniversityBudapestHungary

Personalised recommendations