Advertisement

Lithuanian Mathematical Journal

, Volume 49, Issue 3, pp 287–296 | Cite as

A joint universality theorem for periodic Hurwitz zeta-functions. II

  • A. Laurinčikas
  • S. Skerstonaitė
Article

Abstract

We obtain a joint universality theorem for periodic Hurwitz zeta-functions under weaker hypotheses than those in the previous papers of the first author.

Keywords

limit theorem periodic Hurwitz zeta-function probability measure universality weak convergence 
MSC 11M41 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.MATHGoogle Scholar
  2. 2.
    A. Javtokas and A. Laurinčikas, On the periodic Hurwitz zeta-function, Hardy–Ramanujan J., 29:18–36, 2006.MATHMathSciNetGoogle Scholar
  3. 3.
    A. Javtokas and A. Laurinčikas, The universality of the periodic Hurwitz zeta-function, Integral Transform. Spec. Funct., 17:711–722, 2006.MATHCrossRefGoogle Scholar
  4. 4.
    A. Javtokas and A. Laurinčikas, A joint universality theorem for periodic Hurwitz zeta-functions, Bull. Aust. Math. Soc., 78:13–33, 2008.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Laurinčikas, The joint universality for periodic Hurwitz zeta-functions, Analysis (Munich), 26:419–428, 2006.MATHMathSciNetGoogle Scholar
  6. 6.
    A. Laurinčikas, Voronin-type theorem for periodic Hurwitz zeta-functions, Mat. Sb., 198(2):91–102, 2007 (in Russian). English transl.: Sb. Math., 198(2):231–242, 2007.Google Scholar
  7. 7.
    A. Laurinčikas, Joint universality for periodic Hurwitz zeta-functions, Izv. RAN, Ser. Mat., 72(4):121–140, 2008. English transl.: Izv. Math., 72(4):741–760, 2008.Google Scholar
  8. 8.
    A. Laurinčikas, The joint universality of Hurwitz zeta-functions, Šiauliai Math. Semin., 3(11):169–187, 2008.Google Scholar
  9. 9.
    S.M. Voronin, On the functional independence of Dirichlet L-functions, Acta Arith., 27:493–503, 1975 (in Russian).MATHMathSciNetGoogle Scholar
  10. 10.
    J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, Am. Math. Soc. Collect. Publ., 1960.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Vilnius UniversityVilniusLithuania
  2. 2.Šiauliai UniversityŠiauliaiLithuania

Personalised recommendations