Lithuanian Mathematical Journal

, Volume 48, Issue 3, pp 316–321 | Cite as

A remark on a paper of F. Luca and A. Sankaranarayanan

  • I. Kátai


We generalize a result of F. Luca and A. Sankaranarayanan by proving that the set of n for which ϕ(1) + ⃛ + ϕ(n) is squareful is of zero density. A similar statement holds for σ (n) instead of ϕ(n) and for some other multiplicative functions.


Euler’s totient function squareful integers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.D. Banks, F. Luca, F. Saidok, and I.E. Shparlinski, Values of arithmetical functions equal to a sum of two squares, Quart. J. Math. Oxford Ser., 56:123–139, 2005.MATHCrossRefGoogle Scholar
  2. 2.
    G.L. Dirichlet, Über die Bestimmung der mittleren Werthe in der Zahlentheorie, Werke 2, (S.59), G. Riemer, 1897, 49–66.Google Scholar
  3. 3.
    J.M. De Koninck and F. Luca, Positive integers n such that σ(ϕ(n)) = σ(n), J. Integer Seq., 11:Article 08.1.5, 2008.Google Scholar
  4. 4.
    F. Luca, On the distribution of perfect totients, J. Integer Seq., 9:Article 06.4.4, 2006.Google Scholar
  5. 5.
    F. Luca, On the sum of the first n primes being a square, Lith. Math. J., 47(3):301–306, 2007.CrossRefMathSciNetGoogle Scholar
  6. 6.
    F. Luca and A. Sankaranarayanan, On positive integers n such that ϕ(1) + ⃛ + ϕ(n) is square, Bol. Soc. Mat. Mex., accepted.Google Scholar
  7. 7.
    F. Mertens, Über einige asymptotiszhe Gesetze der Zahlentheorie, Crelle’s J., 77:289–338, 1874.Google Scholar
  8. 8.
    R. Sitaramachandrarao and D. Suryanarayana, On {ie321-01} and {ie321-02}, Proc. Am. Math. Soc., 41:61–66, 1973.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Department of Computer AlgebraEōtvōs Loránd UniversityBudapestHungary

Personalised recommendations