Advertisement

Lithuanian Mathematical Journal

, Volume 47, Issue 3, pp 327–335 | Cite as

On normal approximation of discounted and strongly mixing random variables

  • J. Sunklodas
Article

Abstract

We estimate the difference \(\left| {\mathbb{E}h(Z_v ) - \mathbb{E}h(N)} \right|\) for bounded functions h: ℝ → ℝ satisfying the Lipschitz condition, where Z v = B v −1 i=0 v i X i and \(B_v^2 = \mathbb{E}(\sum\nolimits_{i = 0}^\infty {\upsilon ^i X_i } )^2 > 0\) with discount factor ν such that 0 < ν < 1. Here {X n , n ≥ 0} is a sequence of strongly mixing random variables with \(\mathbb{E}X_n = 0\), and N is a standard normal random variable. In a particular case, the obtained upper bounds are of order O((1 − ν)1/2).

Keywords

discounted central limit theorem strong mixing condition Lipschitz condition Stein’s method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Barbour and G. K. Eagleson, Multiple comparisons and sums of dissociated random variables, Adv. Appl. Probab., 17(1), 147–162 (1985).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    V. Bentkus, A new method for approximation in probability and operator theories, Lith. Math. J., 43(4), 367–388 (2003).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    V. Bentkus and J. Sunklodas, On normal approximations to strongly mixing random fields, Publ. Math. Debrecen, 70(3–4), 253–270 (2007).MathSciNetMATHGoogle Scholar
  4. 4.
    A. V. Bulinski, Limit Theorems Under Weak Dependence Conditions [in Russian], Moscow State Univ. Press, Moscow (1989).Google Scholar
  5. 5.
    L. H. Y. Chen and Q.-M. Shao, Stein’s method for normal approximation, in: Lecture Notes Series, No. 4, Institute for Mathematical Sciences, National University of Singapore, Singapore University Press and World Scientific Publishing (2005), 1–59.Google Scholar
  6. 6.
    G. Christoph and W. Wolf, Convergence Theorems with a Stable Limit Law, Akademie Verlag, Berlin (1992).MATHGoogle Scholar
  7. 7.
    J. Dedecker and E. Rio, On Esseen’s mean central limit theorem for dependent sequences, Prépublication au rapport de recherche numéro, 138, UVSQ 135-05 (2005).Google Scholar
  8. 8.
    R. V. Erickson, L 1 bounds for asymptotic normality of m-dependent sums using Stein’s technique, Ann. Probab., 2, 522–529 (1974).MATHMathSciNetGoogle Scholar
  9. 9.
    H. U. Gerber, The discounted central limit theorem and its Berry-Esseén analogue, Ann. Math. Statist., 42(1), 389–392 (1971).MathSciNetMATHGoogle Scholar
  10. 10.
    M. J. Goovaerts, R. Kass, and R. J. A. Laeven, Q. Tang, R. Vernic, The tail probability of discounted sums of Pareto-like losses in insurance, Scand. Actuar. J., 6, 446–461 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Grin’, Norming sequences in the limit theorems for weakly dependent variables, Theory Probab. Appl., 36(2), 272–288 (1991).CrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Hall and C. C. Heyde, Martingale Limit Theory And Its Applications, New York, Academic Press (1980).Google Scholar
  13. 13.
    I. A. Ibragimov and Yu. V. Linnik, Independent and Stationarily-Related Variables [in Russian], Nauka, Moscow (1965).Google Scholar
  14. 14.
    Z. Y. Lin and C. R. Lu, Limit Theory for Mixing Dependent Random Variables, Kluwer Academic Publishers and Science Press, Dordrecht (1996).MATHGoogle Scholar
  15. 15.
    S. I. Resnick and E. Willekens, Moving averages with random coefficients and random coefficient autoregressive models, Commun. Statist.-Stochastic Models, 7(4), 511–525 (1991).MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Rio, Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes, Probab. Theory Related Fields, 104(2), 255–282 (1996).MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ch. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, in: Proc. Math. Statist. Probab., vol. 2, Univ. Calif. Press, Berkeley, CA (1972), pp. 583–602.Google Scholar
  18. 18.
    J. Sunklodas, An estimate for a bounded Lipschitz metrics for sums of weakly dependent random variables, Lith. Math. J., 29(2), 187–193 (1989).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Sunklodas, Approximation of distributions of sums of weakly dependent random variables by the normal distribution, in: Limit Theorems of Probability Theory, Yu. V. Prokhorov and V. Statulevičius (Eds.), Springer, Berlin (2000), pp. 113–165.Google Scholar
  20. 20.
    J. Sunklodas, On normal approximation for strongly mixing random variables, Acta Appll. Math., 97(1–3), 251–260 (2007).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. N. Tikhomirov, On the rate of convergence in the central limit theorem for weakly dependent variables, Theory Probab. Appl., 25(4), 790–809 (1980).CrossRefMathSciNetGoogle Scholar
  22. 22.
    S. A. Utev, On a method of studying sums of weakly dependent random variables, Sibirsk. Mat. Zh., 32(4), 165–183 (1991).MATHMathSciNetGoogle Scholar
  23. 23.
    T. M. Zuparov, On the convergence in the central limit theorem for weakly dependent random variables, Theory Probab. Appl., 36, 635–643 (1991).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • J. Sunklodas
    • 1
    • 2
  1. 1.Institute of Mathematics and InformaticsVilnius
  2. 2.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations