Lithuanian Mathematical Journal

, Volume 46, Issue 4, pp 432–445 | Cite as

The law of iterated logarithm for logarithmic combinatorial assemblies

  • J. Norkūunienė


The strong convergence of dependent random variables is analyzed and the law of iterated logarithm for real additive functions defined on the class \(\mathcal{A}_n \) of combinatorial assemblies is obtained.


combinatorial assembly additive function strong convergence the law of iterated logarithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Arratia, A. D. Barbour, and S. Tavaré, Logarithmic Combinatorial Structures: a Probabilistic Approach, EMS Monographs in Math., The EMS Publishing House, Zürich (2003).MATHGoogle Scholar
  2. 2.
    G. J. Babu and E. Manstavičius, Brownian motion for random permutations, Sankhyā Ser. A, 61(3), 312–327 (1999).MATHGoogle Scholar
  3. 3.
    G. J. Babu and E. Manstavičius, Limit process with independent increments for the Ewens sampling formula, Ann. Inst. Statist. Math., 54(3), 607–620 (2002).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. L. Goncharov, On the distribution of cycles in permutations, Dokl. AN SSRS, 35, 299–301 (1942).Google Scholar
  5. 5.
    H.-K. Hwang, Asymptotic of Poisson approximation of random discrete distributions, Adv. Appl. Probab, 31, 448–491 (1999).MATHCrossRefGoogle Scholar
  6. 6.
    P. Erdős and P. Turán, On some problems of statistical group theory, I, Z. Wahrsch. verw. Geb., 4, 175–186 (1965).CrossRefGoogle Scholar
  7. 7.
    V. F. Kolchin, B. A. Sevastyanov, and V. P. Chistyakov, Random Allocations, Halsted Press, Washington (1978).Google Scholar
  8. 8.
    V. F. Kolchin, Random Mappings, Optimization Software, Inc., New York (1986).MATHGoogle Scholar
  9. 9.
    E. Manstavičius, Laws of the iterated logarithm for additive functions, Colloq. Math. Soc. János Bolyai, Number Theory, 51, 279–299 (1987).Google Scholar
  10. 10.
    E. Manstavičius, Additive and multiplicative functions on random permutations, Lith. Math. J., 36(4), 400–408 (1996).CrossRefMATHGoogle Scholar
  11. 11.
    E. Manstavičius, The law of iterated logarithm for random permutations, Lith. Math. J., 38, 160–171 (1998).CrossRefMATHGoogle Scholar
  12. 12.
    E. Manstavičius, Iterated logarithm laws and the cycle lengths of a random permutation, in: Trends in Mathematics, Mathematics and Computer Science III, Algorithms, Trees, Combinatorics and Probabilities, M. Drmota et al. (Eds.), Birkhauser, Basel (2004), pp. 39–47.Google Scholar
  13. 13.
    V. V. Petrov, Sums of Independent Random Variables (in Russian), Nauka, Moscow (1972).Google Scholar
  14. 14.
    L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc., 121, 340–357 (1966).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    D. Stark, Total variation asymptotics for refined Poisson process approximations of logarithmic combinatorial assemblies, Combin. Probab. Comput., 8, 567–598 (1999).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    H. Teicher, On the law of iterated logarithm, Ann. Probab., 4, 714–728 (1974).MathSciNetGoogle Scholar
  17. 17.
    V. Zacharovas, The convergence rate to the normal law of a certain variable defined on random polynomials, Lith. Math. J., 42(1), 88–107 (2002).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • J. Norkūunienė
    • 1
  1. 1.Vilnius UniversityVilniusLithuania

Personalised recommendations