Lithuanian Mathematical Journal

, Volume 44, Issue 4, pp 437–446 | Cite as

Distribution of Values of Additive Functions with Respect to the Logarithmic Frequency

  • J. Siaulys


We study the weak convergence of distribution functions μx(nx: f x (n) < u). Here μx denotes the logarithmic frequency and f x , x ⩾ 6, is a set of integer-valued strongly additive functions. The method of factorial moments is basic in the proofs.


additive function logarithmic frequency factorial moments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. V. Levin and N. M. Timofeev, Distribution of values of additive functions, II, Acta Arithm., 33, 327–351 (1977).Google Scholar
  2. 2.
    N. M. Timofeev and S. T. Tulyaganov, Distribution of values of additive functions with weight 1/n, Izv. Akad. Nauk Uz. SSR Ser. Fiz.-Mat., 4, 31–37 (1982).Google Scholar
  3. 3.
    E. Manstavicius, Distribution of additive arithmetic function, in: Probab. Theory and Math. Stat., Proc. V Vilnius Conf., B. Grigelionis et al. (Eds), VSP, Utrecht/TEV, Vilnius (1990), pp. 139–149.Google Scholar
  4. 4.
    E. Manstavicius, Distribution of the traditionally normalized additive function, Ann. Univ. Sci. Budapest. Sect. Comput., 14, 115–133 (1994).Google Scholar
  5. 5.
    J. Siaulys, On the limit distributions of integer-valued additive functions, Proc. Sci. Sem. Faculty Phys. Math., Siauliai Univ., 7, 103–114 (2004).Google Scholar
  6. 6.
    J. Siaulys, Factorial moments for distributions of additive functions, Lith. Math. J., 40(4), 389–408 (2000).Google Scholar
  7. 7.
    J. Siaulys, The logarithmic frequency of values of additive functions, Lith. Math. J., 42(2), 257–264 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • J. Siaulys
    • 1
  1. 1.Vilnius UniversityVilniusLithuania

Personalised recommendations