Skip to main content

Advertisement

Log in

Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Motivated by a genome-wide association study to discover risk variants for the progression of Age-related Macular Degeneration (AMD), we develop a computationally efficient copula-based score test, in which the dependence between bivariate progression times is taken into account. Specifically, a two-step estimation approach with numerical derivatives to approximate the score function and observed information matrix is proposed. Both parametric and weakly parametric marginal distributions under the proportional hazards assumption are considered. Extensive simulation studies are conducted to evaluate the Type I error control and power performance of the proposed method. Finally, we apply our method to a large randomized trial data, the Age-related Eye Disease Study, to identify susceptible risk variants for AMD progression. The top variants identified on Chromosome 10 show significantly differential progression profiles for different genetic groups, which are critical in characterizing and predicting the risk of progression-to-late-AMD for patients with mild to moderate AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1998) Information theory and an extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G (eds) Selected Papers of Hirotugu Akaike. Springer, New York, pp 477–485

    Google Scholar 

  • AREDS Group (1999) The age-related eye disease study (AREDS): design implications. Control Clin Trials 20(6):573–600

    Article  Google Scholar 

  • Breslow NE (1972) Discussion of the paper by D. R. Cox. J R Stat Soc Ser B 34:216–217

    MathSciNet  Google Scholar 

  • Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86(1):6–22

    Article  Google Scholar 

  • Chen X, Fan Y, Pouzo D, Ying Z (2010) Estimation and model selection of semiparametric multivariate survival functions under general censorship. J Econom 157(2):129–142

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z (2012) A flexible copula model for bivariate survival data. PhD thesis, University of Rochester

  • Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1):141–151

    Article  MathSciNet  MATH  Google Scholar 

  • Cox DR, Hinkley DV (1979) Theor Stat. Chapman & Hall/CRC, London

    Google Scholar 

  • Ding Y, Nan B (2011) A sieve m-theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data. Ann Stat 39(1):2795–3443

    MathSciNet  MATH  Google Scholar 

  • Ding Y, Liu Y, Yan Q, Fritsche LG, Cook RJ, Clemons T, Ratnapriya R, Klein ML, Abecasis GR, Swaroop A, Chew EY, Weeks DE, Chen W, The AREDS2 Research Group (2017) Bivariate analysis of age-related macular degeneration progression using genetic risk scores. Genetics 206(1):119–133

    Article  Google Scholar 

  • Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, Zack DJ, Arakawa S, Cipriani V, Ripke S, Igo RP Jr, Buitendijk GHS, Sim X, Weeks DE, Guymer RH, Merriam JE, Francis PJ, Hannum G, Agarwal A, Armbrecht AM, Audo I, Aung T, Barile GR, Benchaboune M, Bird AC, Bishop PN, Branham KE, Brooks M, Brucker AJ, Cade WH, Cain MS, Campochiaro PA, Chan CC, Cheng CY, Chew EY, Chin KA, Chowers I, Clayton DG, Cojocaru R, Conley YP, Cornes BK, Daly MJ, Dhillon B, Edwards AO, Evangelou E, Fagerness J, Ferreyra HA, Friedman JS, Geirsdottir A, George RJ, Gieger C, Gupta N, Hagstrom SA, Harding SP, Haritoglou C, Heckenlively JR, Holz FG, Hughes G, Ioannidis JPA, Ishibashi T, Joseph P, Jun G, Kamatani Y, Katsanis N, Keilhauer C, Khan JC, Kim IK, Kiyohara Y, Klein BEK, Klein R, Kovach JL, Kozak I, Lee CJ, Lee KE, Lichtner P, Lotery AJ, Meitinger T, Mitchell P, Mohand-Sad S, Moore AT, Morgan DJ, Morrison MA, Myers CE, Naj AC, Nakamura Y, Okada Y, Orlin A, Ortube MC, Othman MI, Pappas C, Park KH, Pauer GJT, Peachey NS, Poch O, Priya RR, Reynolds R, Richardson AJ, Ripp R, Rudolph G, Ryu E, Sahel JA, Schaumberg DA, Scholl HPN, Schwartz SG, Scott WK, Shahid H, Sigurdsson H, Silvestri G, Sivakumaran TA, Smith RT, Sobrin L, Souied EH, Stambolian DE, Stefansson H, Sturgill-Short GM, Takahashi A, Tosakulwong N, Truitt BJ, Tsironi EE, Uitterlinden A, van Duijn CM, Vijaya L, Vingerling JR, Vithana EN, Webster AR, Wichmann HE, Winkler TW, Wong TY, Wright AF, Zelenika D, Zhang M, Zhao L, Zhang K, Klein ML, Hageman GS, Lathrop GM, Stefansson K, Allikmets R, Baird PN, Gorin MB, Wang JJ, Klaver CCW, Seddon JM, Pericak-Vance MA, Iyengar SK, Yates JRW, Swaroop A, Weber BHF, Kubo M, DeAngelis MM, Lveillard T, Thorsteinsdottir U, Haines JL, Farrer LA, Heid IM, Abecasis GR, AMD Gene Consortium (2013) Seven new loci associated with age-related macular degeneration. Nat Genet 45(4):433–439

    Article  Google Scholar 

  • Fritsche LG, Igl W, Bailey JNC, Grassmann F, Sengupta S, Bragg-Gresham JL, Burdon KP, Hebbring SJ, Wen C, Gorski M, Kim IK, Cho D, Zack D, Souied E, Scholl HPN, Bala E, Lee KE, Hunter DJ, Sardell RJ, Mitchell P, Merriam JE, Cipriani V, Hoffman JD, Schick T, Lechanteur YTE, Guymer RH, Johnson MP, Jiang Y, Stanton CM, Buitendijk GHS, Zhan X, Kwong AM, Boleda A, Brooks M, Gieser L, Ratnapriya R, Branham KE, Foerster JR, Heckenlively JR, Othman MI, Vote BJ, Liang HH, Souzeau E, McAllister IL, Isaacs T, Hall J, Lake S, Mackey DA, Constable IJ, Craig JE, Kitchner TE, Yang Z, Su Z, Luo H, Chen D, Ouyang H, Flagg K, Lin D, Mao G, Ferreyra H, Stark K, von Strachwitz CN, Wolf A, Brandl C, Rudolph G, Olden M, Morrison MA, Morgan DJ, Schu M, Ahn J, Silvestri G, Tsironi EE, Park KH, Farrer LA, Orlin A, Brucker A, Li M, Curcio CA, Mohand-Sad S, Sahel JA, Audo I, Benchaboune M, Cree AJ, Rennie CA, Goverdhan SV, Grunin M, Hagbi-Levi S, Campochiaro P, Katsanis N, Holz FG, Blond F, Blanch H, Deleuze JF, Igo RP Jr, Truitt B, Peachey NS, Meuer SM, Myers CE, Moore EL, Klein R, Hauser MA, Postel EA, Courtenay MD, Schwartz SG, Kovach JL, Scott WK, Liew G, Tan AG, Gopinath B, Merriam JC, Smith RT, Khan JC, Shahid H, Moore AT, McGrath JA, Laux R, Brantley MA Jr, Agarwal A, Ersoy L, Caramoy A, Langmann T, Saksens NTM, de Jong EK, Hoyng CB, Cain MS, Richardson AJ, Martin TM, Blangero J, Weeks DE, Dhillon B, van Duijn CM, Doheny KF, Romm J, Klaver CCW, Hayward C, Gorin MB, Klein ML, Baird PN, den Hollander AI, Fauser S, Yates JRW, Allikmets R, Wang JJ, Schaumberg DA, Klein BEK, Hagstrom SA, Chowers I, Lotery AJ, Lveillard T, Zhang K, Brilliant MH, Hewitt AW, Swaroop A, Chew EY, Pericak-Vance MA, DeAngelis M, Stambolian D, Haines JL, Iyengar SK, Weber BHF, Abecasis GR, Heid IM (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48(2):134–143

    Article  Google Scholar 

  • Goethals K, Janssen P, Duchateau L (2008) Frailty models and copulas: similarities and differences. J Appl Stat 35(9):1071–1079

    Article  MathSciNet  MATH  Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55(292):698–707

    Article  MathSciNet  MATH  Google Scholar 

  • He W, Lawless JF (2003) Flexible maximum likelihood methods for bivariate proportional hazards models. Biometrics 59(4):837–848

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P (2000) Anal Multivar Surviv Data. Springer, New York

    Book  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall/CRC, London

    Book  MATH  Google Scholar 

  • Kim G, Silvapulle MJ, Silvapulle P (2007) Comparison of semiparametric and parametric methods for estimating copulas. Comput Stat Data Anal 51(6):2836–2850

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless JF, Yilmaz YE (2011) Semiparametric estimation in copula models for bivariate sequential survival times. Biom J 53(5):779–796

    Article  MathSciNet  MATH  Google Scholar 

  • Lee EW, Wei LJ, Amato DA (1992) Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In: Klein J, Goel P (eds) Surviv Anal State Art, vol 211. Springer, Dordrecht, pp 237–247

    Chapter  Google Scholar 

  • Lindfield GR, Penny JET (1989) Microcomputers in numerical analysis. Halsted Press, New York

    MATH  Google Scholar 

  • Mei M (2016) A goodness-of-fit test for semi-parametric copula models of right-censored bivariate survival times. Master’s thesis, Simon Fraser University

  • Nelsen RB (2006) An introduction to Copulas. Springer, New York

    MATH  Google Scholar 

  • Oakes D (1982) A model for association in bivariate survival data. J R Stat Soc Ser B 44(3):414–422

    MathSciNet  MATH  Google Scholar 

  • Sardell RJ, Persad PJ, Pan SS, Whitehead P, Adams LD, Laux R, Fortun JA, Brantley MA Jr, Kovach JL, Schwartz SG, Agarwal A, Haines JL, Scott WK, Pericak-Vance MA (2016) Progression rate from intermediate to advanced age-related macular degeneration is correlated with the number of risk alleles at the CFH locus. Investig Ophthalmol Visual Sci 57(14):6107–6115

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Seddon JM, Reynolds R, Maller J, Fagerness JA, Daly MJ, Rosner B (2009) Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Investig Ophthalmol Visual Sci 50(5):2044–2053

    Article  Google Scholar 

  • Seddon JM, Reynolds R, Yu Y, Rosner B (2014) Three new genetic loci are independently related to progression to advanced macular degeneration. PLoS ONE 9(1):1–11

    Article  Google Scholar 

  • Sha Q, Zhang Z, Zhang S (2011) An improved score test for genetic association studies. Genet Epidemiol 35(5):350–359

    Article  Google Scholar 

  • Shih JH, Louis TA (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51(4):1384–1399

    Article  MathSciNet  MATH  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de L’Institut de Statistique de L’Université de Paris 8:229–231

    MATH  Google Scholar 

  • Swaroop A, Chew EY, Rickman CB, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Human Genet 10:19–43

    Article  Google Scholar 

  • The Eye Diseases Prevalence Research Group (2004) Causes and prevalence of visual impairment among adults in the united states. Arch Ophthalmol 122(4):477–485

    Article  Google Scholar 

  • Wang W, Wells MT (2000) Model selection and semiparametric inference for bivariate failure-time data. J Am Stat Assoc 95(449):62–72

    Article  MathSciNet  MATH  Google Scholar 

  • Wei LJ, Lin D, Weissfeld L (1989) Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Stat Assoc 84(408):1065–1073

    Article  MathSciNet  Google Scholar 

  • Yan Q, Ding Y, Liu Y, Sun T, Fritsche LG, Clemons T, Ratnapriya R, Klein ML, Cook RJ, Liu Y, Fan R, Wei L, Abecasis GR, Swaroop A, Chew EY, Group AR, Weeks DE, Chen W (2018) Genome-wide analysis of disease progression in age-related macular degeneration. Hum Mol Genet 27(5):929–940

    Article  Google Scholar 

  • Zhang S, Okhrin O, Zhou Q, Song P (2016) Goodness-of-fit test for specification of semiparametric copula dependence models. J Econom 193(1):215–233

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Institute of Health (EY024226). We would like to thank the participants in the AREDS study, who made this research possible, and International AMD Genomics Consortium for generating the genetic data and performing quality check.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Liu, Y., Cook, R.J. et al. Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression. Lifetime Data Anal 25, 546–568 (2019). https://doi.org/10.1007/s10985-018-09459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-018-09459-5

Keywords

Navigation