Advertisement

Lifetime Data Analysis

, Volume 23, Issue 1, pp 25–56 | Cite as

Nonparametric estimation in the illness-death model using prevalent data

  • Bella Vakulenko-Lagun
  • Micha Mandel
  • Yair Goldberg
Article

Abstract

We study nonparametric estimation of the illness-death model using left-truncated and right-censored data. The general aim is to estimate the multivariate distribution of a progressive multi-state process. Maximum likelihood estimation under censoring suffers from problems of uniqueness and consistency, so instead we review and extend methods that are based on inverse probability weighting. For univariate left-truncated and right-censored data, nonparametric maximum likelihood estimation can be considerably improved when exploiting knowledge on the truncation distribution. We aim to examine the gain in using such knowledge for inverse probability weighting estimators in the illness-death framework. Additionally, we compare the weights that use truncation variables with the weights that integrate them out, showing, by simulation, that the latter performs more stably and efficiently. We apply the methods to intensive care units data collected in a cross-sectional design, and discuss how the estimators can be easily modified to more general multi-state models.

Keywords

Length bias Uniform truncation Cross-sectional sampling Inverse probability weighting 

Notes

Acknowledgments

We thank the two reviewers for their valuable comments and suggestions. The work was supported by The Israel Science Foundation (Grant No. 519/14) and by NSF grant DMS-1407732.

References

  1. Andersen P, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer-Verlag, New YorkCrossRefMATHGoogle Scholar
  2. Asgharian M, M’Lan C, Wolfson D (2002) Length-biased sampling with right censoring: an unconditional approach. J Am Stat Assoc 97:201–209MathSciNetCrossRefMATHGoogle Scholar
  3. Chang S, Tzeng S (2006) Nonparametric estimation of sojourn time distributions for truncated serial event data—a weight-adjusted approach. Lifetime Data Anal 12:53–67MathSciNetCrossRefMATHGoogle Scholar
  4. Datta S, Satten G (2001) Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models. Stat Probab Lett 55:403–411MathSciNetCrossRefMATHGoogle Scholar
  5. Gill R (1992) Multivariate survival analysis. Theory Probab Appl 37(1):18–31MathSciNetCrossRefMATHGoogle Scholar
  6. Gill R, van der Laan M, Wellner J (1995) Inefficient esttimators of the bivariate survival function for three models. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 31(3):545–597MATHGoogle Scholar
  7. Hougaard P (2000) Analysis of multivariate survival data. Springer, New YorkCrossRefMATHGoogle Scholar
  8. Huang Y, Wang M-C (1995) Estimating the occurrence rate for prevalent survival data in competing risks model. J Am Stat Assoc 90(432):1406–1415MathSciNetCrossRefMATHGoogle Scholar
  9. Kalbfleisch J, Prentice R (2002) The statistical analysis of failure time data. Wiley, HobokenCrossRefMATHGoogle Scholar
  10. Keiding N (1991) Age-specific incidence and prevalence: a statistical perspective. J R Stat Soc Ser A 154(3):371–412MathSciNetCrossRefMATHGoogle Scholar
  11. Kosorok M (2008) Introduction to empirical processes and semiparametric inference. Springer, New YorkCrossRefMATHGoogle Scholar
  12. Lin D, Sun W, Ying Z (1999) Nonparametric estimation of the gap time distributions for serial events with censored data. Biometrika 86(1):59–70MathSciNetCrossRefMATHGoogle Scholar
  13. Mandel M (2010) The competing risks illness-death model under cross-sectional sampling. Biostatistics 11(2):290–303CrossRefGoogle Scholar
  14. Mandel M, Betensky R (2007) Testing goodness of fit of a uniform truncation model. Biometrics 63(2):405–412MathSciNetCrossRefMATHGoogle Scholar
  15. Mnatzaganian G, Galai N, Sprung CD, Zitser-Gurevich Y, Mandel M, Ben-Hur D, Gurman G, Klein M, Lev A, Levi L et al (2005) Increased risk of bloodstream and urinary infections in intensive care unit (ICU) patients compared with patients fitting ICU admission criteria treated in regular wards. J Hosp Infect 59:331–342CrossRefGoogle Scholar
  16. Neuhaus G (1971) On weak convergence of stochastic processes with multidimensional time parameter. Ann Math Stat 42(4):1285–1295MathSciNetCrossRefMATHGoogle Scholar
  17. Prentice R, Moodie Z, Wu J (2004) Nonparametric estimation of the bivariate survivor function. In Lin D, Heagerty P (eds) Proceedings of the second Seattle symposium in Biostatistics. Lecture notes in statistics, vol. 179. Springer, New YorkGoogle Scholar
  18. Putter H, Fiocco M, Geskus RB (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26(11):2389–2430MathSciNetCrossRefGoogle Scholar
  19. Qin J, Shen Y (2010) Statistical methods for analyzing right-censored length-biased data under Cox model. Biometrics 66:382–392MathSciNetCrossRefMATHGoogle Scholar
  20. Robins J, Rotnitzky A et al (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell N, Dietz K, Farewell V (eds) AIDS epidemiology—methodological issues. Springer, BostonGoogle Scholar
  21. Rubin D (1981) The Bayesian bootstrap. Ann Stat 9:130–134MathSciNetCrossRefGoogle Scholar
  22. Tsai W-Y (1990) Testing the assumption of independence of truncation time and failure time. Biometrika 77(1):169–177MathSciNetCrossRefMATHGoogle Scholar
  23. Vakulenko-Lagun B, Mandel M (2016) Comparing estimation approaches for the illness-death model under left truncation and right censoring. Stat Med 35:1533–1548MathSciNetCrossRefGoogle Scholar
  24. van der Laan M (1996) Nonparametric estimation of the bivariate survival function with truncated data. J Multivar Anal 58(1):107–131MathSciNetCrossRefMATHGoogle Scholar
  25. Wang M-C (1989) A semiparametric model for randomly truncated data. J Am Stat Assoc 84:742–748MathSciNetCrossRefMATHGoogle Scholar
  26. Wang M-C (1991) Nonparametric estimation from cross-sectional survival data. J Am Stat Assoc 86:130–143MathSciNetCrossRefMATHGoogle Scholar
  27. Wang M-C (1999) Gap time bias in incident and prevalent cohorts. Stat Sin 9:999–1010MATHGoogle Scholar
  28. Wang M-C, Jewell N, Tsai W-Y (1986) Asymptotic properties of the product limit estimate under random truncation. Ann Stat 14(4):1597–1605MathSciNetCrossRefMATHGoogle Scholar
  29. Wang W, Wells M (1998) Nonparametric estimation of successive duration times under dependent censoring. Biometrika 85(3):561–572MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bella Vakulenko-Lagun
    • 1
  • Micha Mandel
    • 1
  • Yair Goldberg
    • 2
  1. 1.Department of StatisticsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of StatisticsUniversity of HaifaHaifaIsrael

Personalised recommendations