Skip to main content

Advertisement

Log in

Jointly modeling longitudinal proportional data and survival times with an application to the quality of life data in a breast cancer trial

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Motivated by the joint analysis of longitudinal quality of life data and recurrence free survival times from a cancer clinical trial, we present in this paper two approaches to jointly model the longitudinal proportional measurements, which are confined in a finite interval, and survival data. Both approaches assume a proportional hazards model for the survival times. For the longitudinal component, the first approach applies the classical linear mixed model to logit transformed responses, while the second approach directly models the responses using a simplex distribution. A semiparametric method based on a penalized joint likelihood generated by the Laplace approximation is derived to fit the joint model defined by the second approach. The proposed procedures are evaluated in a simulation study and applied to the analysis of breast cancer data motivated this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Aitchison J, Shen SM (1980) Logistic-normal distributions: some properties and uses. Biometrika 67:261–272

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Jørgensen B (1991) Some parametric models on the simplex. J Multivar Anal 39:106–116

    Article  MathSciNet  MATH  Google Scholar 

  • Breslow NE (1972) Contribution to the discussion of D. R. Cox (1972). J R Stat Soc Ser B 34:216–217

    MathSciNet  Google Scholar 

  • Chi Y, Ibrahim JG (2007) A new class of joint models for longitudinal and survival data accommodating zero and non-zero cure fractions: a case study of an international breast cancer study group trial. Stat Sin 17:445–462

    Google Scholar 

  • Diggle P, Sousa I, Chetwynd A (2008) Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture. Stat Med 27:2981–2998

    Article  MathSciNet  Google Scholar 

  • Ibrahim JG, Chu H, Chen LM (2010) Basic concepts and methods for joint models of longitudinal and survival data. J Clin Oncol 28:2796–2801

    Article  Google Scholar 

  • Jørgensen B (1997) The theory of dispersion models. Chapman and Hall, London

    MATH  Google Scholar 

  • Lesaffre E, Rizopoulos D, Tsonaka R (2007) The logistic transform for bounded outcome scores. Biostatistics 8:72–85

    Article  MATH  Google Scholar 

  • Levine MN, Bramwell VH, Pritchard KI, Norris BD, Shepherd LE, Abu-Zahra H, Findlay B, Warr D, Bowman D, Myles J, Arnold A, Vandenberg T, MacKenzie R, Robert J, Ottaway J, Burnell M, Williams CK, Tu DS (1998) Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast caner. J Clin Oncol 16:2651–2658

    Article  Google Scholar 

  • Levine MN, Pritchard KI, Bramwell VH, Shepherd LE, Tu D, Paul N (2005) Randomized trial comparing cyclophosphamide, epirubicin, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of national cancer institute of canada clinical trials group trial MA.5. J Clin Oncol 23:5166–5170

    Article  Google Scholar 

  • Qiu Z, Song PXK (2008) Simplex mixed-effects models for longitudinal proportional data. Scand J Stat 35:577–596

    Article  MathSciNet  MATH  Google Scholar 

  • Revicki DA, Leidy NK (1998) Questionnaire scalling: models and issues. In: Staquet MJ, Hays RD, Fayers PM (eds) Quality of life assessment in clinical trials. Oxford University Press, New York, pp 157–168

    Google Scholar 

  • Ripatti S, Palmgren J (2000) Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56:1016–1022

    Article  MathSciNet  MATH  Google Scholar 

  • Rizopoulos D, Verbeke G, Lesaffre E (2009) Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. J R Stat Soc Ser B 71:637–654

    Article  MathSciNet  MATH  Google Scholar 

  • Schluchter MD (1992) Methods for the analysis of informatively censored longitudinal data. Stat Med 11:1861–1870

    Article  Google Scholar 

  • Song H, Peng YW, Tu DS (2012) A new approach for joint modelling of longitudinal measurements and survival times with a cure fraction. Can J Stat 40:207–224

    Article  MathSciNet  MATH  Google Scholar 

  • Song PXK (2007) Correlated data analysis: modeling, analytics, and applications. Springer, New York

    MATH  Google Scholar 

  • Song PXK, Tan M (2000) Marginal models for longitudinal continuous proportional data. Biometrics 56:496–502

    Article  MATH  Google Scholar 

  • Tsiatis AA, Davidian M (2004) Joint modelling of longitudinal and time-to-event data: an overview. Stat Sin 14:809–834

    MATH  Google Scholar 

  • Tu DS, Chen YQ, Song PX (2004) Analysis of quality of life data from a clinical trial on early breast cancer based on a non-parametric global test for repeated measures with informative censoring. Qual Life Res 13:1520–1530

    Google Scholar 

  • Viviani S, Alfó M, Rizopoulos D (2013) Generalized linear mixed joint model for longitudinal and survival outcomes. Stat Comput 24:417–427

    Article  MathSciNet  MATH  Google Scholar 

  • Vonesh E (2005) A note on the use of Laplace’s approximation for nonlinear mixed-effect models. Biometrika 83:447–452

    Article  MathSciNet  MATH  Google Scholar 

  • Ye W, Lin XH, Taylor JMG (2008) A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data. Stat Interface 1:33–45

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Cai J (2005) Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures. Lifetime Data Anal 11:151–174

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of Hui Song is supported by the Fundamental Research Funds for the Central Universities of China. The work of Yingwei Peng and Dongsheng Tu is supported in part by research grants from Natural Sciences and Engineering Research Council of Canada. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Tu.

Appendices

Appendix 1: Some derivatives used in the estimation method

The marginal likelihood is

$$\begin{aligned} l({\varTheta })\propto \prod _{i=1}^n(\sigma ^2)^{-n_i/2}(\sigma _{\alpha }^2)^{-1/2}\int _{-\infty }^{+\infty } e^{\lambda (\alpha _i)}d\alpha _i. \end{aligned}$$

We approximate \(\lambda (\alpha _i)\) at \(\hat{\alpha }_i\) by Taylor expansion and \(\lambda (\alpha _i)\approx \lambda (\hat{\alpha }_i)+\frac{1}{2}(\alpha _i-\hat{\alpha }_i)^2\lambda ^{(2)}(\hat{\alpha }_i)\) since \(\lambda ^{(1)}(\hat{\alpha }_i)=0\). Thus

$$\begin{aligned} l({\varTheta })\approx & {} \prod _{i=1}^n(\sigma ^2)^{-n_i/2}(\sigma _{\alpha }^2)^{-1/2}e^{\lambda (\hat{\alpha }_i)}\int _{-\infty }^{+\infty } e^{-\frac{(\alpha _i-\hat{\alpha }_i)^2}{2(-\lambda ^{(2)}(\hat{\alpha }_i))^{-1}}}d\alpha _i\\= & {} \prod _{i=1}^n(\sigma ^2)^{-n_i/2}(\sigma _{\alpha }^2)^{-1/2}e^{\lambda (\hat{\alpha }_i)} \sqrt{2\pi |\lambda ^{(2)}(\hat{\alpha }_i)|^{-1}} \end{aligned}$$

and the first order and second-order Laplace-approximated marginal log-likelihood

$$\begin{aligned} \widetilde{LL}({\varTheta })= & {} -\frac{\sum _{i=1}^nn_i}{2}\log {\sigma ^2}-\frac{n}{2}\log {\sigma _{\alpha }^2}+\sum _{i=1}^n\lambda (\hat{\alpha }_i),\\ LL({\varTheta })= & {} -\frac{\sum _{i=1}^nn_i}{2}\log {\sigma ^2}-\frac{n}{2}\log {\sigma _{\alpha }^2}+\sum _{i=1}^n\lambda (\hat{\alpha }_i) -\frac{1}{2}\sum _{i=1}^n\log |\lambda ^{(2)}(\hat{\alpha }_i)|. \end{aligned}$$

Denote \(\lambda _{PJPL}(\alpha )=\sum _{i=1}^n\lambda _{PJPL}(\alpha _i), \alpha =(\alpha _1, \ldots , \alpha _n)^T\), then

$$\begin{aligned} \frac{\partial \lambda _{PJPL}\left( \alpha \right) }{\partial \alpha _i}= & {} -\frac{1}{2\sigma ^2}\sum _{j=1}^{n_i}\frac{\partial d\left( y_{ij}; \mu _{ij}\right) }{\partial \alpha _i}-\frac{\alpha _i}{\sigma ^2_{\alpha }}+\delta _i\phi -\sum _{l=1}^i\delta _l\frac{e^{Z_i^T\gamma +\phi \alpha _i}\phi }{\sum _{k\in R\left( t_l\right) }e^{Z_k^T\gamma +\phi \alpha _k}},\\ \frac{\partial ^2\lambda _{PJPL}\left( \alpha \right) }{\partial \alpha _i^2}= & {} -\frac{1}{2\sigma ^2}\sum _{j=1}^{n_i}\frac{\partial ^2 d\left( y_{ij}; \mu _{ij}\right) }{\partial \alpha _i^2}-\frac{1}{\sigma ^2_{\alpha }}\\&\quad -\,\sum _{l=1}^i\delta _l\frac{e^{Z_i^T\gamma +\phi \alpha _i}}{\sum _{k\in R\left( t_l\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\left[ 1-\frac{e^{Z_i^T\gamma +\phi \alpha _i}}{\sum _{k\in R\left( t_l\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\right] \phi ^2,\\ \frac{\partial ^2\lambda _{PJPL}\left( \alpha \right) }{\partial \alpha _i\partial \alpha _m}= & {} e^{Z_i^T\gamma +\phi \alpha _i}\phi \sum _{l=1}^i\delta _l\frac{e^{Z_m^T\gamma +\phi \alpha _m}\phi }{\left( \sum _{k\in R\left( t_l\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}I_{\left( t_m\in R\left( t_l\right) \right) },\\&\quad \, i, m=1, \ldots , n, i\ne m, \\ \frac{\partial \lambda _{PJPL}\left( \alpha \right) }{\partial \beta }= & {} -\frac{1}{2\sigma ^2}\sum _{i=1}^n\sum _{j=1}^{n_i}\frac{\partial d\left( y_{ij}; \mu _{ij}\right) }{\partial \beta },\ \frac{\partial ^2\lambda _{PJPL}\left( \alpha \right) }{\partial \beta \partial \beta ^T}\\ \end{aligned}$$
$$\begin{aligned}= & {} -\frac{1}{2\sigma ^2}\sum _{i=1}^n\sum _{j=1}^{n_i}\frac{\partial ^2 d\left( y_{ij}; \mu _{ij}\right) }{\partial \beta \partial \beta ^T},\\ \frac{\partial \lambda _{PJPL}\left( \alpha \right) }{\partial \gamma }= & {} \sum _{i=1}^n\delta _i\left( Z_i^T-\frac{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}Z_k^T}{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\right) ,\\ \frac{\partial ^2\lambda _{PJPL}\left( \alpha \right) }{\partial \gamma \partial \gamma ^T}= & {} -\sum _{i=1}^n\delta _i\left( \frac{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}Z_kZ_k^T}{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\right. \\&\left. -\frac{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}Z_k\cdot \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}Z_k^T}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}\right) , \end{aligned}$$
$$\begin{aligned} \frac{\partial LL_{PJPL}}{\partial \sigma ^2}= & {} -\frac{\sum _{i=1}^n n_i}{2}\frac{1}{\sigma ^2}-\frac{1}{2}\sum _{i=1}^n\frac{1}{\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }\frac{\partial \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2}\\&+\sum _{i=1}^n\frac{\partial \lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2},\\ \frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2\partial \sigma ^2}= & {} \frac{\sum _{i=1}^n n_i}{2\sigma ^4}-\frac{1}{2}\sum _{i=1}^n\frac{1}{\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }\left( \frac{\partial ^2\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2\partial \sigma ^2}\right. \\&\left. -\frac{1}{\lambda ^{\left( 2\right) }\left( \alpha _i\right) }\left( \frac{\partial \lambda ^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2}\right) ^2\right) +\,\sum _{i=1}^n\frac{\partial ^2\lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2\partial \sigma ^2},\\ \frac{\partial LL_{PJPL}}{\partial \sigma _{\alpha }^2}= & {} -\frac{n}{2\sigma ^2_{\alpha }}+\sum _{i=1}^n\frac{\partial \lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }} -\frac{1}{2}\sum _{i=1}^n\frac{1}{\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }\frac{\partial \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }},\\ \frac{\partial ^2 LL_{PJPL}}{\partial \sigma _{\alpha }^2\partial \sigma _{\alpha }^2}= & {} \frac{n}{2\sigma ^4_{\alpha }} -\frac{1}{2}\sum _{i=1}^n\frac{1}{\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }\left( \frac{\partial ^2\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma _{\alpha }^2\partial \sigma _{\alpha }^2} -\frac{1}{\lambda ^{\left( 2\right) }\left( \alpha _i\right) }\left( \frac{\partial \lambda ^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }}\right) ^2\right) \\ \end{aligned}$$
$$\begin{aligned}&+\,\sum _{i=1}^n\frac{\partial ^2\lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }\partial \sigma ^2_{\alpha }},\\ \frac{\partial LL_{PJPL}}{\partial \phi }= & {} \sum _{i=1}^n\frac{\partial \lambda _{PJPL}\left( \alpha _i\right) }{\partial \phi } -\frac{1}{2}\sum _{i=1}^n\frac{1}{\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }\frac{\partial \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \phi },\\ \frac{\partial ^2 LL_{PJPL}}{\partial \phi \partial \phi }= & {} -\frac{1}{2}\sum _{i=1}^n\frac{1}{\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }\left( \frac{\partial ^2\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \phi \partial \phi } -\frac{1}{\lambda ^{\left( 2\right) }\left( \alpha _i\right) }\left( \frac{\partial \lambda ^{\left( 2\right) }\left( \alpha _i\right) }{\partial \phi }\right) ^2\right) \\&+\,\sum _{i=1}^n\frac{\partial ^2\lambda _{PJPL}\left( \alpha _i\right) }{\partial \phi \partial \phi },\\ \frac{\partial d\left( y_{ij};\mu _{ij}\right) }{\partial \beta }= & {} \frac{\partial d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}}\frac{\partial \mu _{ij}}{\partial \beta },\ \frac{\partial ^2 d\left( y_{ij};\mu _{ij}\right) }{\partial \beta \partial \beta ^T}=\frac{\partial ^2d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}\partial \mu _{ij}}\frac{\partial \mu _{ij}}{\partial \beta }\frac{\partial \mu _{ij}}{\partial \beta ^T}\\ \end{aligned}$$
$$\begin{aligned}&+\,\frac{\partial d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}}\frac{\partial ^2\mu _{ij}}{\partial \beta \partial \beta ^T},\\ \frac{\partial d\left( y_{ij};\mu _{ij}\right) }{\partial \alpha _i}= & {} \frac{\partial d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}}\mu _{ij}\left( 1-\mu _{ij}\right) ,\ \frac{\partial ^2 d\left( y_{ij};\mu _{ij}\right) }{\partial \alpha _i^2}\\= & {} \frac{\partial ^2d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}^2}\left( \frac{\partial \mu _{ij}}{\partial \alpha _i}\right) ^2+\,\frac{\partial d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}}\frac{\partial ^2\mu _{ij}}{\alpha _i^2}, \end{aligned}$$
$$\begin{aligned} \frac{\partial d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}}= & {} -2\frac{d\left( y_{ij};\mu _{ij}\right) }{y_{ij}-\mu _{ij}}-2d\left( y_{ij};\mu _{ij}\right) \frac{1-2\mu _{ij}}{\mu _{ij}\left( 1-\mu _{ij}\right) },\ \frac{\partial \mu _{ij}}{\partial \beta }\\= & {} \mu _{ij}\left( 1-\mu _{ij}\right) X_{ij},\\ \frac{\partial ^2d\left( y_{ij};\mu _{ij}\right) }{\partial \mu _{ij}^2}= & {} -2\frac{\partial d\left( y_{ij};\mu _{ij}\right) /\partial \mu _{ij}}{y_{ij}-\mu _{ij}}-\frac{2d\left( y_{ij};\mu _{ij}\right) }{\left( y_{ij}-\mu _{ij}\right) ^2}\\&-\,\frac{2\left[ \partial d\left( y_{ij};\mu _{ij}\right) /\partial \mu _{ij}\left( 1-2\mu _{ij}\right) -2d\left( y_{ij};\mu _{ij}\right) \right] }{\mu _{ij}\left( 1-\mu _{ij}\right) }\\&+\,\frac{2d\left( y_{ij};\mu _{ij}\right) \left( 1-2\mu _{ij}\right) ^2}{\mu _{ij}^2\left( 1-\mu _{ij}\right) ^2},\\ \frac{\partial ^2\mu _{ij}}{\partial \beta \partial \beta ^T}= & {} \left( 1-2\mu _{ij}\right) \left( 1-\mu _{ij}\right) \mu _{ij}X_{ij}X_{ij}^T,\\ \end{aligned}$$
$$\begin{aligned} \frac{\partial \lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2}= & {} \frac{1}{2}\sum _{j=1}^{n_i}\frac{d\left( y_{ij};\mu _{ij}\right) }{\sigma ^4},\ \frac{\partial ^2\lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2\partial \sigma ^2}=-\frac{\sum _{j=1}^{n_i}d\left( y_{ij};\mu _{ij}\right) }{\sigma ^6},\\ \frac{\partial \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2}= & {} \frac{1}{2\sigma ^4}\sum _{j=1}^{n_i}\frac{\partial ^2d\left( y_{ij};\mu _{ij}\right) }{\partial \alpha _i^2},\ \frac{\partial ^2\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2\partial \sigma ^2}= -\frac{1}{\sigma ^6}\sum _{j=1}^{n_i}\frac{\partial ^2d\left( y_{ij};\mu _{ij}\right) }{\partial \alpha _i^2},\\ \frac{\partial \lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }}= & {} \frac{\alpha _i^2}{2\sigma ^4_{\alpha }},\ \frac{\partial ^2\lambda _{PJPL}\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }\partial \sigma ^2_{\alpha }}=-\frac{\alpha _i^2}{\sigma ^6_{\alpha }},\ \frac{\partial \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }}\\ \end{aligned}$$
$$\begin{aligned}= & {} \frac{1}{\sigma ^4_{\alpha }},\ \frac{\partial ^2\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2_{\alpha }\partial \sigma ^2_{\alpha }}=-\frac{2}{\sigma ^6_{\alpha }},\\ \frac{\partial \lambda _{PJPL}\left( \alpha _i\right) }{\partial \phi }= & {} \delta _i\left( \alpha _i-\frac{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k}{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\right) ,\\ \frac{\partial ^2\lambda _{PJPL}\left( \alpha _i\right) }{\partial \phi ^2}= & {} -\delta _i\left( \frac{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k^2}{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}}-\left( \frac{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k}{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\right) ^2\right) ,\\ \end{aligned}$$
$$\begin{aligned} \frac{\partial \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \phi }= & {} -\delta _i\left[ \frac{e^{Z_i^T\gamma +\phi \alpha _i}\left( \phi ^2\alpha _i+2\phi \right) }{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}}- \frac{e^{Z_i^T\gamma +\phi \alpha _i}\phi ^2\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}\right. \\&\quad -\,\frac{e^{2\left( Z_i^T\gamma +\phi \alpha _i\right) }\left( 2\phi ^2\alpha _i+2\phi \right) }{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}\\&\quad \left. +\,\frac{2e^{2\left( Z_i^T\gamma +\phi \alpha _i\right) }\phi ^2\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^3}\right] , \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2\lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \phi ^2}=\,-\delta _i&\left[ \frac{e^{Z_i^T\gamma +\phi \alpha _i}\phi ^2\left( \alpha _i^2\phi ^2+4\phi \alpha _i+2\right) }{\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\right. \\&\quad \left. -\, \frac{e^{Z_i^T\gamma +\phi \alpha _i}\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k\left( 2\alpha _i\phi ^2+4\phi \right) }{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}\right. \\ \end{aligned}$$
$$\begin{aligned}&\quad -\,\frac{e^{Z_i^T\gamma +\phi \alpha _i}\phi ^2\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k^2}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}\\&\quad \left. +\,2\frac{e^{Z_i^T\gamma +\phi \alpha _i}\phi ^2\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k\right) ^2}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^3}\right. \\&\quad \left. -\,4\frac{e^{2\left( Z_i^T\gamma +\phi \alpha _i\right) }\alpha _i\left( \phi ^2\alpha _i+\phi \right) }{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}-2\frac{e^{2\left( Z_i^T\gamma +\phi \alpha _i\right) }\left( 2\phi \alpha _i+1\right) }{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2}\right. \\ \end{aligned}$$
$$\begin{aligned}&\quad +\,4\frac{e^{2\left( Z_i^T\gamma +\phi \alpha _i\right) }\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k^2\left( \phi ^2\alpha _i+2\phi \right) }{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^3}\\&\quad \left. +\,4\frac{e^{\left( 2Z_i^T\gamma +\phi \alpha _i\right) }\alpha _i\phi ^2\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^3}\right. \\&\quad +\,2\frac{e^{2\left( Z_i^T\gamma +\phi \alpha _i\right) }\phi ^2\sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k^2}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^3}\\ \end{aligned}$$
$$\begin{aligned}&\quad \left. -\,6\frac{e^{2\left( Z_i^T\gamma +\phi \alpha _i\right) }\phi ^2\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\alpha _k\right) ^2}{\left( \sum _{k\in R\left( t_i\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^4}\right] .\\ \end{aligned}$$

The MLEs of \({\varTheta }'\) can be achieved by Newton-Raphson algorithm through approximated PJPL log-likelihoods.

For the standard error of estimated parameters, we derive

$$\begin{aligned} \mathscr {B}_1=-\left( \begin{array}{llllllll} \frac{\partial ^2 \lambda _{PJPL}}{\partial \beta \partial \beta ^T}&{} \frac{\partial ^2 \lambda _{PJPL}}{\partial \beta \partial \gamma ^T} &{}\frac{\partial ^2 \lambda _{PJPL}}{\partial \beta \partial \alpha ^T}\\ \frac{\partial ^2 \lambda _{PJPL}}{\partial \gamma \partial \beta ^T}&{} \frac{\partial ^2 \lambda _{PJPL}}{\partial \gamma \partial \gamma ^T} &{}\frac{\partial ^2 \lambda _{PJPL}}{\partial \gamma \partial \alpha ^T}\\ \frac{\partial ^2 \lambda _{PJPL}}{\partial \alpha \partial \beta ^T}&{} \frac{\partial ^2 \lambda _{PJPL}}{\partial \alpha \partial \gamma ^T} &{}\frac{\partial ^2 \lambda _{PJPL}}{\partial \alpha \partial \alpha ^T}\\ \end{array}\right) ,\ \mathscr {B}_2=-\left( \begin{array}{llllllll} \frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2\partial \sigma ^2}&{} \frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2\partial \sigma ^2_{\alpha }} &{}\frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2\partial \phi }\\ \frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2_{\alpha }\partial \sigma ^2}&{} \frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2_{\alpha }\partial \sigma ^2_{\alpha }} &{}\frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2_{\alpha }\partial \phi }\\ \frac{\partial ^2 LL_{PJPL}}{\partial \phi \partial \sigma ^2}&{} \frac{\partial ^2 LL_{PJPL}}{\partial \phi \partial \sigma ^2_{\alpha }} &{}\frac{\partial ^2 LL_{PJPL}}{\partial \phi \partial \phi }\\ \end{array}\right) \end{aligned}$$

where

$$\begin{aligned} \frac{\partial ^2\lambda _{PJPL}}{\partial \beta \partial \gamma ^T}= & {} 0,\ \frac{\partial ^2\lambda _{PJPL}}{\partial \beta \partial \alpha ^T}=\left( \frac{\partial ^2\lambda _{PJPL}}{\partial \beta \partial \alpha _1},\ldots , \frac{\partial ^2\lambda _{PJPL}}{\partial \beta \partial \alpha _n}\right) ,\ \frac{\partial ^2\lambda _{PJPL}}{\partial \beta \partial \alpha _i}\\= & {} -\frac{1}{2\sigma ^2}\sum _{j=1}^{n_i}\frac{\partial ^2 d\left( y_{ij};\mu _{ij}\right) }{\partial \beta \partial \alpha _i},\\ \frac{\partial ^2 d\left( y_{ij};\mu _{ij}\right) }{\partial \beta \partial \alpha _i}= & {} \left[ -\,2\frac{\partial d\left( y_{ij};\mu _{ij}\right) /\partial \alpha _i}{y_{ij}-\mu _{ij}}\right. \\ \end{aligned}$$
$$\begin{aligned}&\left. -\,2\frac{d\left( y_{ij};\mu _{ij}\right) \partial \mu _{ij}/\partial \alpha _i}{\left( y_{ij}-\mu _{ij}\right) ^2} -2\frac{\left( 1-2\mu _{ij}\right) \partial d\left( y_{ij};\mu _{ij}\right) /\partial \alpha _i}{\mu _{ij}\left( 1-\mu _{ij}\right) }\right. \\&+\,4\frac{d\left( y_{ij};\mu _{ij}\right) \partial \mu _{ij}/\partial \alpha _i}{\mu _{ij}\left( 1-\mu _{ij}\right) }+2\frac{d\left( y_{ij};\mu _{ij}\right) \left( 1-2\mu _{ij}\right) \partial \mu _{ij}/\partial \alpha _i}{\mu _{ij}^2\left( 1-\mu _{ij}\right) }\\&\left. -\,2\frac{d\left( y_{ij};\mu _{ij}\right) \left( 1-2\mu _{ij}\right) \partial \mu _{ij}/\partial \alpha _i}{\mu _{ij}\left( 1-\mu _{ij}\right) ^2}\right] \\&\cdot \mu _{ij}\left( 1-\mu _{ij}\right) X_{ij} +\left[ -2\frac{d\left( y_{ij};\mu _{ij}\right) }{y_{ij}-\mu _{ij}}-2\frac{d\left( y_{ij};\mu _{ij}\right) \left( 1-2\mu _{ij}\right) }{\mu _{ij}\left( 1-\mu _{ij}\right) }\right] \\&\frac{\partial \mu _{ij}}{\partial \alpha _i} \left( 1-2\mu _{ij}\right) X_{ij},\\ \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2\lambda _{PJPL}}{\partial \gamma \partial \alpha ^T}= & {} \left( \frac{\partial ^2\lambda _{PJPL}}{\partial \gamma \partial \alpha _1},\ldots , \frac{\partial ^2\lambda _{PJPL}}{\partial \gamma \partial \alpha _n}\right) ,\\ \frac{\lambda _{PJPL}}{\partial \gamma \alpha _i}= & {} -\,e^{Z_i^T\gamma +\phi \alpha _i}Z_i\phi \sum _{l=1}^i\frac{\delta _l}{\sum _{K\in R\left( t_l\right) }e^{Z_k^T\gamma +\phi \alpha _k}}\\&+\,e^{Z_i^T\gamma +\phi \alpha _i}\phi \sum _{l=1}^i\frac{\delta _l\sum _{K\in R\left( t_l\right) }e^{Z_k^T\gamma +\phi \alpha _k}Z_k}{\left( \sum _{K\in R\left( t_l\right) }e^{Z_k^T\gamma +\phi \alpha _k}\right) ^2},\\ \frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2\partial \sigma ^2_{\alpha }}= & {} \frac{1}{2\sigma ^4_{\alpha }}\sum _{i=1}^n\frac{1}{\left( \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) \right) ^2} \frac{\partial \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2},\ \frac{\partial ^2 LL_{PJPL}}{\partial \sigma ^2_{\alpha }\partial \phi }\\ \end{aligned}$$
$$\begin{aligned}= & {} \frac{1}{2\sigma ^4_{\alpha }}\sum _{i=1}^n\frac{1}{\left( \lambda _{PJPL}^{\left( 2\right) }\left( \alpha _i\right) \right) ^2} \frac{\partial \lambda ^{\left( 2\right) }_{PJPL}\left( \alpha _i\right) }{\partial \phi },\\ \frac{\partial ^2 LL_{PJPL}}{\partial \phi \partial \sigma ^2}= & {} \frac{1}{2}\sum _{i=1}^n\frac{1}{\left( \lambda ^{\left( 2\right) }\left( \alpha _i\right) \right) ^2}\frac{\partial \lambda ^{\left( 2\right) }\left( \alpha _i\right) }{\partial \sigma ^2}\frac{\partial \lambda ^{\left( 2\right) }\left( \alpha _i\right) }{\partial \phi }. \end{aligned}$$

Appendix 2: Details of data generation

To generate the longitudinal observation y following the simplex distribution (5) with mean \(\mu \) and dispersion \(\sigma ^2\), we use the following property of simplex distributed random variable, \(y=\frac{M}{1+M}\), where \(M=I_M M_1+(1-I_M)M_2\) and \(I_M\) is a binary random variable with probability \(\mu \). That means M is a mixture random variable with probability \(\mu \) being \(M_1\) and probability \(1-\mu \) being \(M_2\). Here \(M_1\) is a reciprocal of inverse-gaussian random variable with mean \(\frac{1-\mu }{\mu }\) and shape parameter \(\frac{1}{\sigma ^2\mu ^2}\), and \(M_2\) follows the inverse gaussian distribution with mean \(\frac{\mu }{1-\mu }\) and shape parameter \(\frac{1}{\sigma ^2(1-\mu )^2}\).

We firstly generate binary random variable \(I_M\) with probability \(\mu \). If \(I_M=1\), generate the inverse-gaussian random variable \(M_1'\) with mean \(\frac{1-\mu }{\mu }\) and shape parameter \(\frac{1}{\sigma ^2\mu ^2}\), then obtain \(M_1=\frac{1}{M_1'}\) and set \(M=M_1\). If \(I_M=0\), generate \(M_2\) from the inverse gaussian with mean \(\frac{\mu }{1-\mu }\) and shape parameter \(\frac{1}{\sigma ^2(1-\mu )^2}\), then set \(M=M_2\). Then we transform M and obtain \(y=\frac{M}{1+M}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Peng, Y. & Tu, D. Jointly modeling longitudinal proportional data and survival times with an application to the quality of life data in a breast cancer trial. Lifetime Data Anal 23, 183–206 (2017). https://doi.org/10.1007/s10985-015-9346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9346-8

Keywords

Navigation