Skip to main content

Advertisement

Log in

Analysis of longitudinal health-related quality of life data with terminal events

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Longitudinal health-related quality of life data arise naturally from studies of progressive and neurodegenerative diseases. In such studies, patients’ mental and physical conditions are measured over their follow-up periods and the resulting data are often complicated by subject-specific measurement times and possible terminal events associated with outcome variables. Motivated by the “Predictor’s Cohort” study on patients with advanced Alzheimer disease, we propose in this paper a semiparametric modeling approach to longitudinal health-related quality of life data. It builds upon and extends some recent developments for longitudinal data with irregular observation times. The new approach handles possibly dependent terminal events. It allows one to examine time-dependent covariate effects on the evolution of outcome variable and to assess nonparametrically change of outcome measurement that is due to factors not incorporated in the covariates. The usual large-sample properties for parameter estimation are established. In particular, it is shown that relevant parameter estimators are asymptotically normal and the asymptotic variances can be estimated consistently by the simple plug-in method. A general procedure for testing a specific parametric form in the nonparametric component is also developed. Simulation studies show that the proposed approach performs well for practical settings. The method is applied to the motivating example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albert SM, Castillo-Castaneda CD, Jacobs DM, Sano M, Bell K, Merchant C, Small S, Stern Y (1999) Proxy-reported quality of life in Alzheimer’s patients: comparison of clinical and population-based samples. J Mental Health Aging 5:49–58.

    Google Scholar 

  • Albert SM, Castillo-Castaneda CD, Sano M, Jacobs DM, Marder K, Bell K, Bylsma F, Lafleche G, Brandt J, Albert M, Stern Y (1996) Quality of life in patients with Alzheimer’s disease as reported by patient proxies. J Am Geriatr Soc 44:1342–1347.

    Google Scholar 

  • Albert SM, Jacobs DM, Sano M, Marder K, Bell K, Devanand D, Brandt J, Albert M, Stern Y (2000) Longitudinal study of quality of life in people with advanced Alzheimer’s disease. Am J Geriatr Psychiatr 9:160–168.

    Article  Google Scholar 

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120.

    Article  MATH  MathSciNet  Google Scholar 

  • Cole BF, Gelber RD, Goldhirsch A (1993) Cox regression models for quality adjusted survival analysis. Stat Med 12:975–987.

    Article  Google Scholar 

  • Cole BF, Gelber RD, Gelber S, Mukhopadhyay P (2004) A quality-adjusted survival (Q-TWiST) model for evaluating treatments for advanced stage cancer. J Biopharmaceut Stat 14(1):111–124.

    Article  MathSciNet  Google Scholar 

  • Cox DR (1972) Regression models and life-tables (with discussion). J Roy Stat Soc Ser B 34:187–220.

    MATH  Google Scholar 

  • Dupuy J, Mesbah M (2002) Joint modeling of event time and nonignorable missing longitudinal data. Lifetime Data Anal 8:99–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Fairclough DL (2002) Design and analysis of quality of life studies in clinical trials. Chapman & Hall/CRC, New York, NY.

    Google Scholar 

  • Fayers PM, Machin D (2000) Quality of life: assessment, analysis and interpretation. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Ghosh D, Lin DY (2002) Marginal regression models for recurrent and terminal events. Stat Sinica 12:663–688.

    MATH  MathSciNet  Google Scholar 

  • Hoover DR, Rice JA, Wu CO, Yang LP (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85:809–822.

    Article  MATH  MathSciNet  Google Scholar 

  • Lawless JF, Nadeau C (1995) Some simple robust methods for the analysis of recurrent events. Technometrics 37:158–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Fleming TR, Wei LJ (1994) Confidence bands for survival curves under the proportional hazards model. Biometrika 81:73–81.

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J Roy Stat Soc Ser B 62:711–730.

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Ying Z (2001) Semiparametric and nonparametric regression analysis of longitudinal data (with discussion). J Am Stat Assoc 96:103–126.

    Article  MATH  MathSciNet  Google Scholar 

  • Moyeed RA, Diggle PJ (1994) Rates of convergence in semiparametric modeling of longitudinal data. Aust J Stat 36:75–93.

    Article  MATH  MathSciNet  Google Scholar 

  • Pepe MS, Cai J (1993) Some graphical displays and marginal regression analyses for recurrent failure times and time dependent covariates. J Am Stat Assoc 88:811–820.

    Article  MATH  Google Scholar 

  • Robins J, Rotnitzky A (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell N, Dietz K, Farewell V (eds) AIDS epidemiology-methodological issues. Birkhauser, Boston, pp 297–331.

    Google Scholar 

  • Stern Y, Sano M, Paulson J et al. (1987) Modified mini-mental state exam: validity and reliability (abstract). Neurology 37(suppl1): 179.

    Google Scholar 

  • Zeger SL, Diggle PJ (1994) Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 50:689–699.

    Article  MATH  Google Scholar 

  • Zhao H, Tsiatis AA (1997) A consistent estimator for the distribution of quality adjusted survival time. Biometrika 84:339–348.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Associate Editor and two referees for their insightful and constructive comments. This research was supported in part by grants from the National Institutes of Health, the National Science Foundation and the New York City Council Speaker’s Fund for Public Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhezhen Jin.

Appendix

Appendix

Proof of Theorem 1

(i) Recall that the estimating Eq. (3.9) is used to estimate γ, for convenience, denote

$$U_{n0}(\gamma, \hat{\xi})=\sum_{i=1}^n \int_0^\infty \left(Z_{i1} (t)-\hat{\bar{Z}}_1^*(t;\gamma)\right) \hat{\delta}_i^*(t)dN_i^*(t).$$

The consistency of \(\hat{\gamma}\) follows from the almost identical arguments in Appendix A.1 of Lin et al. (2000). Thus, we omit the details.

Now we sketch the proof of \(n^{1/2}(\hat{\gamma}-\gamma)=n^{-1/2}\sum_{i=1}^n \psi_i +o_P(1)\). The Taylor series expansion of \(U_{n0}(\hat{\gamma}, \hat{\xi})\) at \((\gamma, \hat{\xi})\) and the law of large numbers lead to

$$n^{1/2}(\hat{\gamma}-\gamma)=\Omega_\gamma^{-1} n^{-1/2} U_{n0}(\gamma, \hat{\xi}) +o_P(1).$$
(A.1)

Note that

$$\begin{aligned} U_{n0}(\gamma, \hat{\xi})=&\sum_{i=1}^n \int_0^\infty \left(Z_{i1}(t)-\frac{{R_{z1}^{(1)}(t;\gamma)}} {{R_{z1}^{(0)} (t;\gamma)}}\right) {\delta}_i^*(t)d{\mathcal{M}_i}(t) \\ &+\sum_{i=1}^n \int_0^\infty\left(Z_{i1}(t)-\frac{{R_{z1}^{(1)}(t;\gamma)}} {{R_{z1}^{(0)}(t;\gamma)}}\right) \left(\hat{\delta}_i^*(t) -{\delta}_i^*(t)\right)d{\mathcal{M}_i}(t)+o_P(1).\\ \end{aligned}$$
(A.2)

Following Lin et al. (1994),

$$\begin{aligned} n^{1/2}(\hat{\delta}_i^*(t)-{\delta}_i^*(t))=&{\delta}_i^*(t) n^{-1/2} \sum_{k=1}^n \left[\int_0^t \frac{{e^{\xi^{\rm T} Z_{i2}(u)} d M_k^S(u;\xi)}} {{R_{z2}^{(0)}(u;\xi)}} +\int_0^t e^{\xi^{\rm T} Z_{i2}(u)} \left(Z_{i2}(u)-\frac{{R_{z2}^{(1)}(u;\xi)}} {{R_{z2}^{(0)}(u;\xi)}}\right)^{\rm T}\right.\\ & \left. \times d\Lambda_d(u)\Omega_\xi^{-1} \int_0^\infty \left(Z_{k2}(u)-\frac{{R_{z2}^{(1)}(u;\xi)}} {{R_{z2}^{(0)}(u;\xi)}}\right) d M_k^S(u;\xi)\right] +o_P(1).\end{aligned}$$
(A.3)

Plugging (A.3) and (A.2) into (A.1) and interchanging integrals, we get \(n^{1/2}(\hat{\gamma}-\gamma)=n^{-1/2}\sum_{i=1}^n \psi_i +o_P(1)\).

(ii) Since \(\hat{\gamma}\), \(\hat{\xi}\) are consistent, the consistency of \(\hat{\beta}\) follows from the expression (3.12) by applying law of large numbers.

Let

$$\begin{aligned} U_{n1}(\beta,\gamma,\hat{\xi})=&\sum_{i=1}^n\int_0^\infty \left\{W(t)\hat{\delta}_i^*(t) \left[X_i(t)-\hat{\bar{X}}^* (t;{\gamma})\right]\right. \\ &\left.\times\left[Y_i(t)-\hat{\bar{Y}}^*(t;{\gamma})-\beta^{\rm T} (X_i(t)-\hat{\bar{X}}^*(t;{\gamma}))\right] \right\}dN_i^*(t), \\ U_{n1}(\beta,\gamma,{\xi})=& \sum_{i=1}^n\int_0^\infty \left\{W(t) {\delta}_i^*(t) \left[X_i(t)-{\bar{X}}^*(t;{\gamma})\right]\right. \\ &\left.\times\left[Y_i(t)-{\bar{Y}}^*(t;{\gamma})-\beta^{\rm T} (X_i(t)-{\bar{X}}^*(t;{\gamma}))\right] \right\}dN_i^*(t).\\ \end{aligned}$$

Clearly, \(-\frac{{1}} {{n}} \frac{{\partial U_{n1}(\beta,\gamma,\hat{\xi})}} {{\partial \beta}}\) converges to D as \(n\rightarrow \infty\). As in Lin and Ying (2001), \(-\frac{{1}}{{n}}\frac{{\partial U_{n1}(\beta,\gamma,\hat{\xi})}} {{\partial \gamma}}\) converges in probability to H. Thus, the Taylor series expansion of \(U_{n1}(\hat{\beta},\hat{\gamma},\hat{\xi})\), and the law of large numbers lead to

$$n^{1/2}(\hat{\beta}-\beta)=n^{-1/2} D^{-1}\left[U_{n1}({\beta}, {\gamma},\hat{\xi})-H (\hat{\gamma}-\gamma)\right]+o_P(1).$$
(A.4)

Now

$$\begin{aligned} n^{-1/2}\left[U_{n1}({\beta},{\gamma}, \hat{\xi})-U_{n1}({\beta},{\gamma},{\xi})\right] = & n^{-1/2} \sum_{i=1}^n\int_0^\infty W(t)\left(\hat{\delta}_i^*(t) -{\delta}_i^*(t)\right) \left[X_i(t)-{\bar{X}}^*(t;{\gamma}) \right]\\ & \times\left[Y_i(t)-{\bar{Y}}^*(t;{\gamma})-\beta^{\rm T} (X_i(t)-{\bar{X}}^*(t;{\gamma}))\right] dN_i^*(t) \\ &+o_P(1).\\ \end{aligned}$$
(A.5)

Plugging (A.3) into (A.5) and interchanging integrals with simplification, we get

$$n^{-1/2}U_{n1}({\beta},{\gamma},\hat{\xi})=n^{-1/2}\sum_{i=1}^n (\eta_i+\zeta_i) +o_P(1).$$
(A.6)

Plugging (A.6) and the asymptotic expression of \(n^{1/2}(\hat{\gamma}-\gamma)\) in (i) into (A.4), the asymptotic expression of \(\hat{\beta}\) follows.

Proof of theorem 2

Note that \(n^{1/2}[\hat{\mathcal{A}}(t;\hat{\beta},\hat{\xi},\hat{\gamma}) -\tilde{\mathcal{A}}(t;\hat{\theta},\hat{\xi},\hat{\gamma})]\) can be decomposed as follows:

$$n^{1/2}[\hat{\mathcal{A}}(t;\hat{\beta},\hat{\xi},\hat{\gamma})- \tilde{\mathcal{A}}(t;\hat{\theta},\hat{\xi},\hat{\gamma})] =n^{1/2} (I_1+I_2+I_3+I_4+I_5+I_6+I_7),$$
(A.7)

where

$$\begin{aligned} I_1=&\hat{\mathcal{A}}(t;\hat{\beta},\hat{\xi},\hat{\gamma}) -\hat{\mathcal{A}}(t;{\beta},\hat{\xi},\hat{\gamma}), \\ I_2=&\hat{\mathcal{A}}(t;{\beta},\hat{\xi},\hat{\gamma})-\hat{\mathcal{A}} (t; \beta,\hat{\xi},\gamma), \\ I_3=&\hat{\mathcal{A}}(t;{\beta}, \hat{\xi},\gamma)-\hat{\mathcal{A}} (t;{\beta},{\xi},\gamma), \\ I_4=&\hat{\mathcal{A}}(t;{\beta}, {\xi},\gamma)-\int_0^t \alpha_0 (s,\theta) d \hat{\Lambda}(s;\xi,\gamma), \\ I_5=&\int_0^t \alpha_0(s,\theta) d \hat{\Lambda} (s;\xi,\gamma)-\int_0^t \alpha_0(s,\theta) d \hat{\Lambda} (s;\hat{\xi},\gamma), \\ I_6=&\int_0^t \alpha_0(s,\theta) d \hat{\Lambda}(s;\hat{\xi},\gamma) -\tilde{\mathcal{A}}(t; \theta,\hat{\xi}, \hat{\gamma}), \\ I_7=&\tilde{\mathcal{A}}(t; \theta,\hat{\xi}, \hat{\gamma}) -\tilde{\mathcal{A}}(t; \hat{\theta},\hat{\xi},\hat{\gamma})].\\ \end{aligned}$$

With the expression (3.13) of \(\hat{\mathcal{A}}(t;\beta,\xi,\gamma)\), after some algebra, we get

$$\begin{aligned} I_1=&\sum_{i=1}^n\int_0^t \frac{{X_i^{\rm T}(s) (\beta-\hat{\beta})\hat{\delta}_i^*(s)d N_i^*(s)}} {{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}=D_x(t)(\hat{\beta}-\beta)+o_P(\|\hat{\beta}-\beta\|),\\ I_2=&\sum_{i=1}^n\int_0^t \frac{{(Y_i(s)-\beta^{\rm T} X_i(s))\sum_{j=1}^n \hat{\delta}_j^*(s) (e^{{\gamma}^{\rm T}Z_{j1}(s)}-e^{\hat{\gamma}^{\rm T}Z_{j1}(s)})\hat{\delta}_i^*(s)d N_i^*(s)}} {{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{{\gamma}^{\rm T}Z_{j1}(s)} \sum_{k=1}^n \hat{\delta}_k^*(s) e^{\hat{\gamma}^{\rm T}Z_{k1}(s)}}}.\\ \end{aligned}$$

Moreover, by the expression (3.11) of \(\hat{\Lambda}\) and Taylor series expansions,

$$\begin{aligned} I_3=& \sum_{i=1}^n \int_0^t\left(Y_i(s)-\beta^{\rm T} X_i (s)\right) \left[\frac{{\hat{\delta}_i^*(t)}} {{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}-\frac{{\delta_i^*(t)}} {{\sum_{j=1}^n {\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}\right]dN_i^*(t), \\ I_4=&\sum_{i=1}^n \int_0^t \frac{{\delta_i^*(s)\epsilon_i(s)dN_i^*(s)}} {{\sum_{j=1}^n {\delta}_j^*(s) e^{{\gamma}^{\rm T}Z_{j1}(s)}}} =\sum_{i=1}^n \int_0^t \frac{{\delta_i^*(s)\left[dM_i(s)-\alpha_0(s)d\mathcal{M}_i(s)\right]}} {{\sum_{j=1}^n {\delta}_j^*(s) e^{{\gamma}^{\rm T}Z_{j1}(s)}}}, \\ I_5=&\sum_{i=1}^n \int_0^t \alpha_0(s,\theta)\left[\frac{{\delta_i^*(t)}} {{\sum_{j=1}^n {\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}-\frac{{\hat{\delta}_i^*(t)}} {{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}\right]dN_i^*(t), \\ I_6=&\sum_{i=1}^n \int_0^t \alpha_0(s,\theta)\hat{\delta}_i^*(s) \left[\frac{{1}}{{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{{\gamma}^{\rm T}Z_{j1}(s)}}} -\frac{{1}}{{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}\right]dN_i^*(t), \\ I_7=&\sum_{i=1}^n\int_0^t\frac{{[\alpha_0(s,\theta)-\alpha_0 (s,\hat{\theta})]\hat{\delta}_i^*(s)dN_i^*(s)}} {{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}.\\ \end{aligned}$$

The consistency of \(\hat{\gamma}\) and \(\hat{\xi}\) and Taylor series expansion, we can get

$$\begin{aligned} I_7=&\left[-\sum_{i=1}^n\int_0^t \frac{{[\frac{{\partial{\alpha_0(s,\theta)}}} {{\partial{\theta}}}\hat{\delta}_i^*(s)dN_i^*(s)}} {{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}\right] (\hat{\theta}-\theta)+o_P(\|\hat{\theta}-\theta\|),\\ I_2+I_6=&\left[-\int_0^t\frac{{\hat{\delta}_i^*(s)\epsilon_i(s) \sum_{j=1}^n\hat{\delta}_j^*(s) e^{{\gamma}^{\rm T}Z_{j1}(s)}Z_{j1}(s) dN_i^*(s)}} {{\left(\sum_{j=1}^n \hat{\delta}_j^*(s) e^{{\gamma}^{\rm T}Z_{j1}(s)}\right)^2}}\right](\hat{\gamma}-\gamma)+o_P (\|\hat{\gamma}-\gamma\|) \\ =&H(t)(\hat{\gamma}-\gamma)+o_P(\|\hat{\gamma}-\gamma\|).\\ \end{aligned}$$

In addition,

$$\begin{aligned} I_3+I_5=&\sum_{i=1}^n \int_0^t \epsilon_i(t) \left[\frac{{\delta_i^*(t)}} {{\sum_{j=1}^n {\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}-\frac{{\hat{\delta}_i^*(t)}} {{\sum_{j=1}^n \hat{\delta}_j^*(s) e^{\hat{\gamma}^{\rm T}Z_{j1}(s)}}}\right]dN_i^*(t) \\ =&\sum_{i=1}^n \int_0^t \frac{{[\hat{\delta}_i^*(s)-\delta_i^*(s)]\left[dM_i(s)-\alpha_0(s) d\mathcal{M}_i(s)\right]}} {{nr_{z2}^{(0)}(s)}}+o_P(1).\\ \end{aligned}$$

Recall that D 1 is the limit of \((-1/n)[(\partial{U}_n(\theta;\beta))/(\partial {\theta})]\), D 2 is the limit of \((-1/n)[(\partial{U}_n(\theta;\beta))/(\partial {\beta})]\), D x (t) is the limit of \(-\frac{{1}} {{n}}\sum_{i=1}^n\int_0^t \frac{{X_i(s)\delta_i^*(s) d N_i^*(s)}} {{R_{z1}(s;\hat{\gamma})}}\). With Taylor series expansion, notice that

$$0=n^{-1/2}U_n(\hat{\theta};\hat{\beta},\hat{\xi})=n^{-1/2} \left(U_n({\theta};{\beta},\hat{\xi}) -D_1 n^{1/2}(\hat{\theta}- \theta) - D_2 n^{1/2}(\hat{\beta}-\beta)\right)+o_P(1).$$

which leads to,

$$\begin{aligned} n^{1/2}(\hat{\theta}-\theta) =&D_1^{-1}\left(n^{-1/2} U_n({\theta};{\beta},\hat{\xi})-D_2 n^{1/2}(\hat{\beta}-\beta)\right) +o_P(1) \\ =&n^{-1/2}D_1^{-1}\left(U_n({\theta};{\beta},{\xi}) +U_n({\theta}; {\beta},\hat{\xi})-U_n({\theta};{\beta},{\xi})\right)-D_1^{-1}D_2 n^{1/2}(\hat{\beta}-\beta)+o_P(1).\\ \end{aligned}$$

Use the asymptotic representation (A.3) of \(\hat{\delta}_i^*(t)-\delta_i^*(t)\) and the fact that

$$U_n({\theta};{\beta},{\xi})=\sum_{i=1}^n \int_0^\infty \frac{{\partial{\alpha_0(t,\theta)}}} {{\partial{\theta}}} \left[d M_i(t)-\alpha_0(t)d \mathcal{M}_i(t)\right]$$
$$U_n({\theta};{\beta},\hat{\xi})-U_n({\theta};{\beta},{\xi}) =\sum_{i=1}^n \int_0^\infty \left[K (Z_{i2}-\bar{Z}_{i2}(t))+ \frac{{q_e(t)}} {{r_{z2}^{(0)}(t)}} \right] dM_i^S(t) +o_P(n\|\hat{\xi} -\xi\|), $$

we can get \({n}^{1/2} (\hat{\mathcal{A}} (t;\hat{\beta},\hat{\xi},\hat{\gamma}) - \tilde{\mathcal{A}}(t;\hat{\theta},\hat{\xi},\hat{\gamma})) =n^{-1/2}\sum_{i=1}^n \Gamma_i(t) +o_p(1)\), where

$$\begin{aligned} \Gamma_i(t)=&\int_0^t\frac{{\epsilon_i(s)[dM_i^*(s;\mathcal{A}, \beta,\gamma,\xi)-\alpha_0(s)d\mathcal{M}_i^*(s;\gamma,\xi)]}} {{r_{z1}^0(s;\gamma)}}-H(t)\psi_i \\ &+\int_0^\infty C(t)\left[Z_{i2}-\frac{{r_{z2}^{(1)}(s;\xi)}} {{r_{z2}^{(0)}(s;\xi)}}\right]dM_i^S(s)+\frac{{q_v(t,s)}} {{r_{z2}^{(0)}(s;\xi)}}dM_i^S(s) \\ &+\left[D_x^{T}(t)+\int_0^t \left(\frac{{\partial{\alpha_0} (s,\theta)}} {{\partial \theta}}\right)^{ T} d {\Lambda}(s) D_1^{-1} D_2\right]\phi_i \\ &-\left[\int_0^t \left(\frac{{\partial{\alpha_0}(s,\theta)}} {{\partial \theta}}\right)^{ T} d {\Lambda}(s)\right] D_1^{-1}\int_0^\infty \left(\frac{{\partial{\alpha_0}(s,\theta)}} {{\partial \theta}}\right)^{ T}\left[dM_i^*(s;\mathcal{A},\beta,\gamma,\xi)-\alpha_0(s)d\mathcal{M}_i^* (s;\gamma,\xi)\right] \\ &-\left[\int_0^t \left(\frac{{\partial{\alpha_0}(s,\theta)}} {{\partial \theta}}\right)^{ T} d {\Lambda}(s)\right] D_1^{-1}\int_0^\infty \left\{K\left[Z_{i2}-\frac{{r_{z2}^{(1)}(s;\xi)}} {{r_{z2}^{(0)}(s;\xi)}}\right]+\frac{{q_e(s)}} {{r_{z2}^{(0)}(s;\xi)}}\right\}dM_i^S(s).\\ \end{aligned}$$

This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Z., Liu, M., Albert, S. et al. Analysis of longitudinal health-related quality of life data with terminal events. Lifetime Data Anal 12, 169–190 (2006). https://doi.org/10.1007/s10985-006-9002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-006-9002-4

Keywords

Navigation