Lifetime Data Analysis

, Volume 10, Issue 4, pp 407–423 | Cite as

Survival Models Based on the Ornstein-Uhlenbeck Process

  • Odd O. Aalen
  • Håkon K. Gjessing


When modelling survival data it may be of interest to imagine an underlying process leading up to the event in question. The Ornstein-Uhlenbeck process is a natural model to consider in a biological context because it stabilizes around some equilibrium point. This corresponds to the homeostasis often observed in biology, and also to some extent in the social sciences. First, we study the first-passage time distribution of an Ornstein-Uhlenbeck process, focussing especially on what is termed quasi-stationarity and the various shapes of the hazard rate. Next, we consider a model where the individual hazard rate is a squared function of an Ornstein-Uhlenbeck process. We extend known results on this model. The results on quasi-stationarity are relevant for recent discussions about mortality plateaus. In addition, we point out a connection to models for short-term interest rates in financial modeling.


Cox-Ingersoll-Ross process first-passage time hazard rate mortality plateau Ornstein- Uhlenbeck process quasi-stationary distribution survival analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalen, O.O., Gjessing, H.K. 2001Understanding the shape of the hazard rateStatistical Science16122Google Scholar
  2. Aalen, O.O., Gjessing, H.K. 2003A look behind survival data: Underlying processes and quasi-stationarityLindqvist, B.H.Doksum, K.A. eds. Mathematical and Statistical Methods in ReliabilityWorld Scientific PublishingSingapore221234Google Scholar
  3. Abramowitz, M., Stegun, I.A. 1964Handbook of Mathematical FunctionsDover PublicationsNew YorkGoogle Scholar
  4. Baxter, M., Rennie, A. 1997Financial Calculus. An Introduction to Derivative pricingCambridge University PressNew YorkGoogle Scholar
  5. Cox, J.C., Ingersoll, J.E., Ross, S.A. 1985A theory of the term structure of interest ratesEconometrica53385407Google Scholar
  6. Gjessing, H.K., Aalen, O.O., Hjort, N.L. 2003Frailty models based on Lévy processesAdvances in Applied Probability35532550Google Scholar
  7. Karlin, S., Taylor, H.M. 1981A Second Course in Stochastic ProcessesAcademic PressNew YorkGoogle Scholar
  8. Keilson, J. 1966A limit theorem for passage times in ergodic regenerative processesAnnals of Mathematical Statistics37866870Google Scholar
  9. Lee, M.-L.T., DeGruttola, V., Schoenfeld, D. 2000A model for markers and latent health statusJournal of the Royal Statistical Society B62747762Google Scholar
  10. Lebedev, N.N. 1972Special Functions and Their ApplicationsDover PublicationsNew YorkGoogle Scholar
  11. Lladser, M., San Martin, J. 2000Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck processJournal of Applied Probability37511520Google Scholar
  12. Manton, K.G., Stallard, E. 1988Chronic Disease ModellingCharles Griffin Company LimitedLondonGoogle Scholar
  13. Musiela, M., Rutkowski, M. 1997Martingale Methods in Financial ModellingSpringer-VerlagNew YorkGoogle Scholar
  14. Myers, L.E. 1981Survival functions induced by stochastic covariate processesJournal of Applied Probability18523529Google Scholar
  15. Øksendal, B. 1998Stochastic differential equationsSpringer-VerlagBerlinGoogle Scholar
  16. Paulsen, J., Gjessing, H.K. 1997Ruin theory with stochastic return on investmentsAdvances in Applied Probability29965985Google Scholar
  17. Ricciardi, L.M., Sato, S. 1988First-passage-time density and moments for the Ornstein-Uhlenbeck processJournal of Applied Probability254357Google Scholar
  18. Samorodnitsky, G. 2002Long Range Dependence, Heavy Tails and Rare Events, Lecture Notes MaphystoCentre for Mathematical Physics and StochasticsAarhusGoogle Scholar
  19. Singpurwalla, N.D. 1995Survival in dynamic environmentsStatistical Science1086103Google Scholar
  20. Steinsaltz, D., Evans, S.N. 2004Markov mortality models: Implications of quasistationarity and varying initial distributionsTheoretical Population Biology65319337Google Scholar
  21. Steinsaltz, D., Evans, S.N. 2003Quasistationary distributions for one-dimensional diffusions with killing’’, Technical report, Department of StatisticsUniversity of CaliforniaBerkeleyGoogle Scholar
  22. Wenocur, M.L. 1990Ornstein-Uhlenbeck processes with quadratic killingJournal of Applied Probability27707712Google Scholar
  23. S. Wolfram, The Mathematica book, 4th edition, Wolfram Media/ Cambridge University Press, 1999.Google Scholar
  24. S. Wolfram (2004a). Scholar
  25. S. Wolfram (2004b). Scholar
  26. Woodbury, M.A., Manton, K.G. 1977A random walk model of human mortality and agingTheoretical Population Biology113748Google Scholar
  27. Yashin, A.I. 1985Dynamics in survival analysis: conditional Gaussian property versus Cameron-Martin formulaKrylov, N.V.Liptser, R.S.Novikov, A.A. eds. Statistics and control of stochastic processesSpringerNew York466475Google Scholar
  28. Yashin, A.I., Manton, K.G. 1997Effects of unobserved and partially observed covariate processes on system failure: A review of models and estimation strategiesStatistical Science122034Google Scholar
  29. A. I. Yashin and J. W. Vaupel, ‘‘Measurement and estimation in heterogeneous populations,’’ in Lecture Notes in Biomathematics 65: Immunology and Epidemiology (Hoffman GW and Hraba T, eds.) pp. 198–206, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Statistics, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  2. 2.Norwegian Institute of Public HealthOsloNorway

Personalised recommendations