Lifetime Data Analysis

, Volume 11, Issue 2, pp 175–191 | Cite as

Semiparametric Proportional Odds Models for Spatially Correlated Survival Data

  • Sudipto Banerjee
  • Dipak K. Dey


The last decade has witnessed major developments in Geographical Information Systems (GIS) technology resulting in the need for statisticians to develop models that account for spatial clustering and variation. In public health settings, epidemiologists and health-care professionals are interested in discerning spatial patterns in survival data that might exist among the counties. This paper develops a Bayesian hierarchical model for capturing spatial heterogeneity within the framework of proportional odds. This is deemed more appropriate when a substantial percentage of subjects enjoy prolonged survival. We discuss the implementation issues of our models, perform comparisons among competing models and illustrate with data from the SEER (Surveillance Epidemiology and End Results) database of the National Cancer Institute, paying particular attention to the underlying spatial story.


Bayesian hierarchical methods frailty models Markov Chain Monte Carlo (MCMC) mixtures of beta functions spatial association proportional odds model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee, S., Wall, M., Carlin, B. P. 2003‘‘Frailty modelling for spatially correlated survival data with application to infant mortality in Minnesota’‘Biostatistics4123142Google Scholar
  2. S. Banerjee and B. P. Carlin, ‘‘Spatial semi-parametric proportional hazards models for analyzing infant mortality rates in Minnesota counties,’’ in Case Studies in Bayesian Statistics, Volume VI, eds. C. Gatsonis, et al., Springer: New York, pp. 137–151, 2002. Google Scholar
  3. S. Bennett, ‘‘Log-logistic regression models for survival data,’’ Applied Statistics vol. 32 pp. 165–171, 1983a. S. Bennett, ‘‘Analysis of survival data by the proportional odds model,’’ Statistics. Medicine vol. 2 pp. 273–277, 1983b. Google Scholar
  4. Bernardinelli, L., Montomoli, C. 1992‘‘Empirical Bayes Versus Fully Bayesian Analysis of Geographical Variation in Disease Risk’‘Statistics Medicine119831007Google Scholar
  5. Besag, J. 1974‘‘Spatial interaction and the statistical analysis of lattice systems (with discussion)’‘Journal of the Royal Statistics Society Series B36192236Google Scholar
  6. Besag, J., Kooperberg, C. 1995‘‘On conditional and intrinsic autoregression’‘Biometrika82733746Google Scholar
  7. Besag, J., York, J. C., Mollie, A. 1991‘‘Bayesian Image Restoration, with two applications in spatial statistics (with discussion)’‘Annals of the Institute of Statistical Mathematics43159Google Scholar
  8. Carlin, B. P., Hodges, J. S. 1999‘‘Hierarchical proportional hazards regression models for highly stratified data’‘Biometrics5511621170Google Scholar
  9. Carlin, B. P., Louis, T. A. 2000Bayes and Empirical Bayes Methods for Data Analysis2Chapman and Hall/CRC PressBoca Raton, FLGoogle Scholar
  10. Cheng, S. C., Wei, L. J., Ying, Z. 1995‘‘Analysis of transformation models with censored data’‘Biometrika5511621170Google Scholar
  11. Clayton, D. G. 1994‘‘Some approaches to the analysis of recurrent event data’‘Statistics in Medical Research3244262Google Scholar
  12. Clayton, D. G., Cuzick, J. 1985 ‘‘Multivariate generalizations of the proportional hazards models (with discussion)’‘Journal of the Royal Statistical Society Series A14882127Google Scholar
  13. Cox, D. R., Oakes, D. 1984Analysis of Survival DataChapman and HallLondonGoogle Scholar
  14. Cressie, N. A. C. 1993Statistics for Spatial Data, revised edWileyNew YorkGoogle Scholar
  15. Cuzick, J. 1988‘‘Rank Regression’‘Annals of Statistics1613691389Google Scholar
  16. Diaconis, P., Ylvisaker, D. 1985‘‘Quantifying prior opinion”Berger, J. O.Bernardo, J.Smith, A.F.M. eds. Bayesian statistics 2North-HollandAmsterdam133156Google Scholar
  17. Ecker, M. D., Gelfand, A. E. 1999‘‘Bayesian modeling and inference for geometrically anisotropic spatial data’‘Mathematical Geology316783Google Scholar
  18. Gelfand, A. E., Mallick, B. K. 1995‘‘Bayesian analysis of proportional hazards models built from monotone functions’‘Biometrics51843852Google Scholar
  19. Gelfand, A. E., Ghosh, S. K. 1998‘‘Model choice A minimum posterior predictive loss approach’‘Biometrika85113Google Scholar
  20. Gilks, W. R., Wild, P. 1992‘‘Adaptive rejection sampling for Gibbs sampling’‘Applied Statistics41337348Google Scholar
  21. Gilks, W. R., Richardson, S., Spiegelhalter, D. J.. 1996Markov Chain Monte Carlo in PracticeChapman and Hall/CRC PressBoca-Raton, FLGoogle Scholar
  22. Harville, D. A. 1996Matrix Algebra from a Statistician’s PerspectiveSpringer-VerlagNew YorkGoogle Scholar
  23. Ibrahim, J. G., Chen, M.H., Sinha, D. 2001Bayesian Survival AnalysisSpringer-VerlagNew YorkGoogle Scholar
  24. Kim, H., Sun, D., Tsutakawa, R. K. 2001‘‘A bivariate Bayes method for improving the estimates of mortality rates with a twofold conditional autoregressive model’‘Journal of the American Statistical Association9615061521Google Scholar
  25. Li, Y., Ryan, L. 2002‘‘Modeling spatial survival data using semiparametric frailty models’‘Biometrics58287297Google Scholar
  26. Lam, K. F., Leung, T. L. 2001, ‘‘Marginal likelihood estimation for proportional odds models with right-censored data’‘Lifetime Data Analysis73954Google Scholar
  27. Lam, K. F., Lee, Y. W., Leung, T. L. 2002‘‘Modeling multivariate survival data by a semi-parametric random effects proportional odds model’‘Biometrics58316323Google Scholar
  28. Murphy, S. A., Rossini, A.J., Van Der Vaart, A. W. 1997‘‘Maximum likelihood estimation in the proportional odds model’‘Journal of the American Statistical Association92968976Google Scholar
  29. Neal, R. M. 2003‘‘Slice sampling (with discussion)’‘Annals of Statistical31705767Google Scholar
  30. Pettitt, A. N. 1984‘‘Proportional odds models for survival data and estimates using ranks’‘Applied Statistical33169175Google Scholar
  31. Press, W. H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. 1992Numerical Recipes in CCambridge University PressCambridgeGoogle Scholar
  32. Qiou, Z., Ravishanker, N., Dey, D. K. 1999‘‘Multivariate survival analysis with positive stable frailties’‘Biometrics55637644Google Scholar
  33. L. A. G. Ries, M. P. Eisner, C. L. Kosary, B. F. Hankey, B. A. Miller, L. Clegg, A. Mariotto, M. P. Fay, E. J. Feuer, and B. K. Edwards (eds), SEER Cancer Statistics Review, 1975–2000, National Cancer Institute. Bethesda, MD,, 2003.Google Scholar
  34. Sahu, S. K., Dey, D. K. 2000‘‘A comparison of frailty and other models for bivariate survival data’‘Lifetime data analysis6207228Google Scholar
  35. Sinha, D., Dey, D. K. 1997‘‘Semiparametric Bayesian analysis of survival data’‘Journal of the American Statistical Association9211951212Google Scholar
  36. Spiegelhalter, D. J., Best, N., Carlin, B. P., van der Linde, A. 2002‘‘Bayesian measures of model complexity and fit (with discussion)’‘Journal of the Royal Statistical Sociation Series B64134Google Scholar
  37. Stein, M. L. 1999Interpolation of Spatial Data Some Theory for KrigingSpringer-VerlagNew YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of BiostatisticsUniversity of MinnesotaMineapolisUSA
  2. 2.Department of StatisticsUniversity of ConnecticutStorrsUSA

Personalised recommendations