Global review on interactions between insect pests and other forest disturbances

Abstract

Context

Forest landscapes worldwide are shaped by abiotic drivers such as fire, windstorms, and drought, but also by biotic drivers like insect pests and pathogens. Although the effects of such drivers on forest dynamics have been studied extensively, knowledge of the interactions between insect pests and other drivers of change is still coarse and fragmented. Indeed, new invasive insect species and global change may lead to novel interactions and produce impacts on forest ecosystems never before experienced.

Objectives

We aimed to review the mechanisms underlying interactions between insect pest outbreaks and other forest disturbances, identify interactions emerging from current disturbance dynamics, and highlight the role of simulation models in exploring these interactions in a dynamic, mechanistic, and spatially explicit manner.

Methods

We reviewed the state of the science regarding interactions between insect pests and other forest disturbances, collecting a set of 216 scientific articles.

Results

Most studies focused on the interaction between insect outbreaks and fire, whereas interactions between insect pests and drought, forest management or forest diseases received much less attention. Although we identified some trends in how interactions were manifested, interactions were not more commonly found at particular spatial or temporal scales. Relatively few studies used simulation models to explore interactions between disturbances and very few studies explored multiple interactions.

Conclusions

Interactions between pests and other forest disturbances play critical roles in driving forest dynamics. The effects of these interactions are likely to increase in the face of continuing global change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analysed during this study are included in this published article and its Supplementary Information files.

References

  1. Addison A, Powell JA, Bentz BJ, Six DL (2014) Integrating models to investigate critical phenological overlaps in complex ecological interactions: the mountain pine beetle-fungus symbiosis. J Theor Biol 368:55–66

    PubMed  Article  PubMed Central  Google Scholar 

  2. Ager AA, McMahan A, Hayes JL, Smith EL (2007) Modeling the effects of thinning on bark beetle impacts and wildfire potential in the Blue Mountains of eastern Oregon. Landsc Urban Plan 80:301–311

    Article  Google Scholar 

  3. Agne MC, Beedlow PA, Shaw DC, Woodruff DR, Lee EH, Cline SP, Comeleo RL (2018) Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A. For Ecol Manag 409:317–332

    Article  Google Scholar 

  4. Agne MC, Woolley T, Fitzgerald S (2016) Fire severity and cumulative disturbance effects in the post-mountain pine beetle lodgepole pine forests of the Pole Creek Fire. For Ecol Manag 366:73–86

    Article  Google Scholar 

  5. Agrell J, Kopper B, McDonald EP, Lindroth RL (2005) CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Glob Change Biol 11:588–599

    Article  Google Scholar 

  6. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted.), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

  7. Almeida S, Louzada J, Sperber C, Barlow J (2011) Subtle land-use change and tropical biodiversity: dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica 43:704–710

    Article  Google Scholar 

  8. Altmann SH (2013) Crown condition, water availability, insect damage and landscape features: are they important to the Chilean tree Nothofagus glauca (Nothofagaceae) in the context of climate change? Aust J Bot 61:394–403

    Article  Google Scholar 

  9. Amman GD, Ryan KC (1991) Insect infestation of fire-injured trees in the Greater Yellowstone Area. USDA Forest Service, Intermountain Forest and Range Experiment Station

  10. Anderegg WRL, Allen CD, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady K, Mcdowell N, Pan Y, Raffa K, Sala A (2015) Tree mortality from drought, insects, and their interactions in a changing climate. N Phytol 208:674–683

    Article  Google Scholar 

  11. Andrus RA, Veblen TT, Harvey BJ, Hart SJ (2016) Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado. Ecol Appl 26:700–711

    PubMed  Article  PubMed Central  Google Scholar 

  12. Angulo-Sandoval P, Fernández-Marín H, Zimmerman JK, Aide TM (2004) Changes in patterns of understory leaf phenology and herbivory following hurricane damage. Biotropica 36:60

    Google Scholar 

  13. Anhold JA, Jenkins MJ, Long JN (1996) Management of lodgepole pine stand density to reduce susceptibility to mountain pine beetle attack. West J Appl For 11:50–53

    Article  Google Scholar 

  14. Arango-Velez A, Galindo González LM, Meents MJ, El Kayal W, Cooke BJ, Linsky J, Lusebrink I, Cooke JEK (2014) Influence of water deficit on the molecular responses of Pinus contorta ×Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera. Tree Physiol 34:1220–1239

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Arbellay E, Daniels LD, Mansfield SD, Chang AS (2017) Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire. Tree Physiol 37:1611–1621

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Aukema BH, Richards GR, Krauth SJ, Raffa KF (2006) Species assemblage arriving at and emerging from trees colonized by Ips pini in the Great Lakes Region: partitioning by time since colonization, season, and host species. Ann Entomol Soc Am 97:117–129

    Article  Google Scholar 

  17. Aukema BH, Zhu J, Møller J, Rasmussen JG, Raffa KF (2010) Predisposition to bark beetle attack by root herbivores and associated pathogens: roles in forest decline, gap formation, and persistence of endemic bark beetle populations. For Ecol Manag 259:374–382

    Article  Google Scholar 

  18. Awmack CS, Harrington R, Lindroth RL (2004) Aphid individual performance may not predict population responses to elevated CO2 or O3. Glob Change Biol 10:1414–1423

    Article  Google Scholar 

  19. Ayres MP, Lombardero M (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ. https://doi.org/10.1016/S0048-9697(00)00528-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Backhaus S, Wiehl D, Beierkuhnlein C, Jentsch A, Wellstein C (2014) Warming and drought do not influence the palatability of Quercus pubescens Willd. leaves of four European provenances. Arthropod Plant Interact 8:329–337

    Google Scholar 

  21. Bakaj F, Mietkiewicz N, Veblen TT, Kulakowski D (2016) The relative importance of tree and stand properties in susceptibility to spruce beetle outbreak in the mid-20th century. Ecosphere 7:1–17

    Article  Google Scholar 

  22. Baker PJ, Robinson A (2010) Review and comparison of tree- and stand-based forest growth models for potential integration into EnSym. University of Melbourne, Melbourne

    Google Scholar 

  23. Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE 13:1–14

    Article  CAS  Google Scholar 

  24. Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS ONE. https://doi.org/10.1371/journal.pone.0017976

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bauce É, Fuentealba A (2013) Interactions between stand thinning, site quality and host tree species on spruce budworm biological performance and host tree resistance over a 6 year period after thinning. For Ecol Manag 304:212–223

    Article  Google Scholar 

  26. Bebi P, Kulakowski D, Veblen TT (2003) Interactions between fire and spruce beetles in a subalpine Rocky Mountain forest landscape. Ecology 84:362–371

    Article  Google Scholar 

  27. Beh MM, Metz MR, Seybold SJ, Rizzo DM (2014) The novel interaction between Phytophthora ramorum and wildfire elicits elevated ambrosia beetle landing rates on tanoak, Notholithocarpus densiflorus. For Ecol Manag 318:21–33

    Article  Google Scholar 

  28. Bergeron Y, Pierre-Rene D, Dansereau PRP-R (1993) Predicting the composition of Canadian southern boreal forest in different fire cycles. J Veg Sci 4:827–832

    Article  Google Scholar 

  29. Berthiaume R, Bauce É, Hébert C, Brodeur J (2009) Host tree age as a selective pressure leading to local adaptation of a population of a polyphagous Lepidoptera in virgin boreal forest. Bull Entomol Res 99:493–501

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Bigler C, Kulakowski D, Veblen TT (2005) Multiple disturbance interactions and drought influence fire severity in Rocky Mountain subalpine forests. Ecology 86:3018–3029

    Article  Google Scholar 

  31. Birch JD, Lutz JA, Hogg EH, Simard SW, Pelletier R, LaRoi GH, Karst J (2019) Decline of an ecotone forest: 50 years of demography in the southern boreal forest. Ecosphere. https://doi.org/10.1002/ecs2.2698

    Article  Google Scholar 

  32. Björkman C (2000) Interactive effects of host resistance and drought stress on the performance of a gall-making aphid living on Norway spruce. Oecologia 123:223–231

    PubMed  Article  PubMed Central  Google Scholar 

  33. Bolte A, Hilbrig L, Grundmann B, Kampf F, Brunet J, Roloff A (2010) Climate change impacts on stand structure and competitive interactions in a southern Swedish spruce-beech forest. Eur J For Res 129:261–276

    Article  Google Scholar 

  34. Borkowski A, Skrzecz I (2016) Ecological segregation of bark beetle (Coleopter Curculionida Scolytinae) infested Scots pine. Ecol Res 31:135–144

    Article  Google Scholar 

  35. Boucher D, Boulanger Y, Aubin I, Bernier PY, Beaudoin A, Guindon L, Gauthier S (2018) Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol Appl 28:1245–1259

    PubMed  Article  PubMed Central  Google Scholar 

  36. Boulanger Y, Sirois L, Hébert C (2013) Distribution patterns of three long-horned beetles (Coleoptera: Cerambycidae) shortly after fire in boreal forest: adults colonizing stands versus progeny emerging from trees. Environ Entomol 42:17–28

    PubMed  Article  PubMed Central  Google Scholar 

  37. Bouzidi HA, Balducci L, Mackay J, Deslauriers A (2019) Interactive effects of defoliation and water deficit on growth, water status, and mortality of black spruce (Picea mariana (Mill.) B.S.P.). Ann For Sci. https://doi.org/10.1007/s13595-019-0809-z

    Article  Google Scholar 

  38. Bradley T, Tueller P (2001) Effects of fire on bark beetle presence on Jeffrey pine in the Lake Tahoe basin. For Ecol Manag 142:205–214

    Article  Google Scholar 

  39. Bras A, Avtzis DN, Kenis M, Li H, Vétek G, Bernard A, Courtin C, Rousselet J, Roques A, Auger-Rozenberg MA (2004) (2019) A complex invasion story underlies the fast spread of the invasive box tree moth (Cydalima perspectalis) across Europe. J Pest Sci 92:1187–1202

    Article  Google Scholar 

  40. Brockerhoff EG, Liebhold AM, Jactel H (2006) The ecology of forest insect invasions and advances in their management. Can J For Res 36:263–268

    Article  Google Scholar 

  41. Buma B, Wessman CA (2011) Disturbance interactions can impact resilience mechanisms of forests. Ecosphere 2:1–13

    Article  Google Scholar 

  42. Burton PJ, Boulanger Y (2018) Characterizing combined fire and insect outbreak disturbance regimes in British Columbia, Canada. Landsc Ecol 33:1997–2011

    Article  Google Scholar 

  43. Butler CD, Trumble JT (2008) Effects of pollutants on bottom-up and top-down processes in insect–plant interactions. Environ Pollut 156:1–10

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Bylund H, Tenow O (1994) Long-term dynamics of leaf miners, Eriocrania spp., on mountain birch: alternate year fluctuations and interaction with Epirrita autumnata. Ecol Entomol 19:310–318

    Article  Google Scholar 

  45. Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M, Čada V, Camarero JJ, Cherubini P, Cochard H, Coyea MR, Čufar K, Das AJ, Davi H, Delzon S, Dorman M, Gea-Izquierdo G, Gillner S, Haavik LJ, Hartmann H, Hereş AM, Hultine KR, Janda P, Kane JM, Kharuk VI, Kitzberger T, Klein T, Kramer K, Lens F, Levanic T, Linares Calderon JC, Lloret F, Lobo-Do-Vale R, Lombardi F, López Rodríguez R, Mäkinen H, Mayr S, Mészáros I, Metsaranta JM, Minunno F, Oberhuber W, Papadopoulos A, Peltoniemi M, Petritan AM, Rohner B, Sangüesa-Barreda G, Sarris D, Smith JM, Stan AB, Sterck F, Stojanović DB, Suarez ML, Svoboda M, Tognetti R, Torres-Ruiz JM, Trotsiuk V, Villalba R, Vodde F, Westwood AR, Wyckoff PH, Zafirov N, Martínez-Vilalta J (2017) A synthesis of radial growth patterns preceding tree mortality. Glob Change Biol 23:1675–1690

    Article  Google Scholar 

  46. Caldeira M, Fernandéz C, Tomé V, Pereira J (2002) Positive effect of drought on longicorn borer larval survival and growth on eucalyptus trunks. Ann For Sci 59:99–106

    Article  Google Scholar 

  47. Campbell EM, MacLean DA, Bergeron Y (2008) The severity of budworm-caused growth reductions in balsam fir/spruce stands varies with the hardwood content of surrounding forest landscapes. For Sci 54:195–205

    Google Scholar 

  48. Candau JN, Fleming RA, Wang X (2018) Ecoregional patterns of spruce budworm–wildfire interactions in central Canada’s Forests. Forests. https://doi.org/10.3390/f9030137

    Article  Google Scholar 

  49. Carnegie AJ, Stone C, Lawson S, Matsuki M (2005) Can we grow certified eucalypt plantations in subtropical Australia? An insect pest management perspective. N Z J For Sci 35:223–245

    Google Scholar 

  50. Castagneyrol B, Moreira X, Jactel H (2018) Drought and plant neighbourhood interactively determine herbivore consumption and performance. Sci Rep 8:1–12

    CAS  Article  Google Scholar 

  51. Ceriani-Nakamurakare E, Slodowicz M, Gonzalez-Audino P, Dolinko A, Carmarán C (2016) Mycobiota associated with the ambrosia beetle Megaplatypus mutatus: threat to poplar plantations. Forestry 89:191–200

    Article  Google Scholar 

  52. Cervera T, Pino J, Marull J, Padró R, Tello E (2019) Understanding the long-term dynamics of forest transition: from deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Policy 80:318–331

    Article  Google Scholar 

  53. Chang WY, Lantz VA, Hennigar CR, Maclean DA (2012) Economic impacts of forest pests: a case study of spruce budworm outbreaks and control in New Brunswick, Canada. Can J For Res 42:490–505

    Article  Google Scholar 

  54. Chapin FS, Starfield AM (1997) Time lags and novel ecosystems in response to transient climatic change in Arctic Alaska. Clim Change 35:449–461

    Article  Google Scholar 

  55. Chen G, He Y, De Santis A, Li G, Cobb R, Meentemeyer RK (2017) Assessing the impact of emerging forest disease on wildfire using Landsat and KOMPSAT-2 data. Remote Sens Environ 195:218–229

    Article  Google Scholar 

  56. Chen-Charpentier B, Leite MCA (2014) A model for coupling fire and insect outbreak in forests. Ecol Model 286:26–36

    Article  Google Scholar 

  57. Chew JD, Stalling C, Moeller K (2004) Integrating knowledge for simulating vegetation change at landscape scales. West J Appl For 19:102–108

    Article  Google Scholar 

  58. Choi WI, Nam Y, Lee CY, Choi BK, Shin YJ, Lim JH, Koh SH, Park YS (2019) Changes in major insect pests of Pine forests in Korea over the last 50 years. Forests 10:1–15

    Google Scholar 

  59. Chou CY, Song B, Hedden RL, Williams TM, Culin JD, Post CJ (2010) Three-dimensional landscape visualizations: new technique towards wildfire and forest bark beetle management. Forests 1:82–97

    Article  Google Scholar 

  60. Clark JS, Gelfand AE (2006) A future for models and data in environmental science. Trends Ecol Evol 21:375–380

    PubMed  Article  PubMed Central  Google Scholar 

  61. Cohen WB, Yang Z, Stehman SV, Schroeder TA, Bell DM, Masek JG, Huang C, Meigs GW (2016) Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline. For Ecol Manag 360:242–252

    Article  Google Scholar 

  62. Coleman TW, Meeker JR, Clarke SR, Rieske LK (2008) The suppression of Dendroctonus frontalis and subsequent wildfire have an impact on forest stand dynamics. Appl Veg Sci 11:231–242

    Article  Google Scholar 

  63. Colgan LJ, Erbilgin N (2010) The ecological interaction of the mountain pine beetle and jack pine budworm in the boreal forest. For Chron 86:766–774

    Article  Google Scholar 

  64. Cotton-Gagnon A, Simard M, De Grandpré L, Kneeshaw D (2018) Salvage logging during spruce budworm outbreaks increases defoliation of black spruce regeneration. For Ecol Manag 430:421–430

    Article  Google Scholar 

  65. Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conserv Biol 13:700–712

    Article  Google Scholar 

  66. Croise L, Lieutier F (1993) Effects of drought on the induced defence reaction of Scots pine to bark beetle-associated fungi. Ann des Sci For 50:91–97

    Article  Google Scholar 

  67. Crotteau JS, Keyes CR, Hood SM, Affleck DLR, Sala A (2018) Fuel dynamics after a bark beetle outbreak impacts experimental fuel treatments. Fire Ecol 14:13

    Article  Google Scholar 

  68. Cullingham CI, Cooke JEK, Dang S, Davis CS, Cooke BJ, Coltman DW (2011) Mountain pine beetle host-range expansion threatens the boreal forest. Mol Ecol 20:2157–2171

    PubMed  PubMed Central  Article  Google Scholar 

  69. D’Amato AW, Troumbly SJ, Saunders MR, Puettmann KJ, Albers MA (2011) Growth and survival of Picea glauca following thinning of plantations affected by eastern Spruce budworm. North J Appl For 28:105–150

    Article  Google Scholar 

  70. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres M, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stoks BJ, Wotton M (2001) Climate change and forest disturbances. Bioscience 51:723

    Article  Google Scholar 

  71. Davis RS, Hood S, Bentz BJ (2012) Fire-injured ponderosa pine provide a pulsed resource for bark beetles. Can J For Res 42:2022–2036

    Article  Google Scholar 

  72. Day JK, Pérez DM (2013) Reducing uncertainty and risk through forest management planning in British Columbia. For Ecol Manag 300:117–124

    Article  Google Scholar 

  73. DeRose RJ, Long JN (2009) Wildfire and spruce beetle outbreak: simulation of interacting disturbances in the central Rocky Mountains. Écoscience 16:28–38

    Article  Google Scholar 

  74. DeRose RJ, Long JN (2012) Drought-driven disturbance history characterizes a southern Rocky Mountain subalpine forest. Can J For Res 42:1649–1660

    Article  Google Scholar 

  75. Dix ME, Britton K (2014) A dynamic invasive species research vision: opportunities and priorities 2009-29. Invasive Species National Research Opportunities and Priorities and Strategic Management Framework, pp 1–222

  76. Docherty M, Wade FA, Hurst DK, Whittaker JB, Lea PJ (1997) Responses of tree sap-feeding herbivores to elevated CO2. Glob Change Biol 3:51–59

    Article  Google Scholar 

  77. Donato DC, Harvey BJ, Romme WH, Simard M, Turner MG (2013) Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone. Ecol Appl 23:3–20

    PubMed  Article  PubMed Central  Google Scholar 

  78. Duane A, Brotons L (2018) Synoptic weather conditions and changing fire regimes in a Mediterranean environment. Agric For Meteorol 253–254:190–202

    Article  Google Scholar 

  79. Dunn JP, Lorio PL (1993) Modified water regimes affect photosynthesis, xylem water potential, cambial growth, and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera, Scolytidae). Environ Entomol 22:948–957

    Article  Google Scholar 

  80. Durand-Gillmann M, Cailleret M, Boivin T, Nageleisen LM, Davi H (2014) Individual vulnerability factors of Silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: Mistletoe (Viscum album L. ssp. abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. Ann For Sci 71:659–673

    Article  Google Scholar 

  81. Ehnström B, Långström B, Hellqvist C (1995) Insects in burned forests—forest protection and faunal conservation (preliminary results). Entomol Fenn 6:109–117

    Article  Google Scholar 

  82. Elkin CM, Reid ML (2004) Attack and reproductive success of mountain pine beetles (Coleoptera: Scolytidae) in fire-damaged lodgepole pines. Environ Entomol 33:1070–1080

    Article  Google Scholar 

  83. FAO (2008) Salud y vitalidad de los bosques. FAO, Rome, pp 69–88

    Google Scholar 

  84. Fettig C, Borys R, Dabney C (2010) Effects of fire and fire surrogate treatments on bark beetle-caused tree mortality in the Southern Cascades, California. For Sci 56:60–73

    Google Scholar 

  85. Fettig CJ, Borys RR, McKelvey SR, Dabney CP (2008) Blacks Mountain Experimental Forest: bark beetle responses to differences in forest structure and the application of prescribed fire in interior ponderosa pine. Can J For Res 38:924–935

    Article  Google Scholar 

  86. Firmino PN, Calvao T, Ayres MP, Pimentel CS (2017) Monochamus galloprovincialis and Bursaphelenchus xylophilus life history in an area severely affected by pine wilt disease: implications for forest management. For Ecol Manag 389:105–115

    Article  Google Scholar 

  87. Flake SW, Weisberg PJ (2019) Fine-scale stand structure mediates drought-induced tree mortality in pinyon–juniper woodlands. Ecol Appl 29:1–13

    Article  Google Scholar 

  88. Fleming RA, Candau J-N, McAlpine RS (2002) Landscape-scale analysis of interactions between insect defoliation and forest fire in Central Canada. Clim Change 55:251–272

    Article  Google Scholar 

  89. Flower A, Gavin DG, Heyerdahl EK, Parsons RA, Cohn GM (2014) Drought-triggered western spruce budworm outbreaks in the interior Pacific Northwest: a multi-century dendrochronological record. For Ecol Manag 324:16–27

    Article  Google Scholar 

  90. Friedenberg NA, Sarkar S, Kouchoukos N, Billings RF, Ayres MP (2008) Temperature extremes, density dependence, and southern pine beetle (Coleoptera: Curculionidae) population dynamics in east Texas. Environ Entomol 37:650–659

    PubMed  Article  PubMed Central  Google Scholar 

  91. Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, Mcdowell NG (2013) Drought predisposes piñon-juniper woodlands to insect attacks and mortality. N Phytol 198:567–578

    CAS  Article  Google Scholar 

  92. Gehring CA, Cobb NS, Whitham TG (2013) The University of Chicago three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines reviewed work(s). Am Nat 149:824–841

    Article  Google Scholar 

  93. Gitau CW, Bashford R, Carnegie AJ, Gurr GM (2013) A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: a focus on beetle interactions with other pests and their associates. For Ecol Manag 297:1–14

    Article  Google Scholar 

  94. Gonzalez-Brambila CN, Reyes-Gonzalez L, Veloso F, Perez-Angón MA (2016) The scientific impact of developing nations. PLoS ONE. https://doi.org/10.1371/journal.pone.0151328

    Article  PubMed  PubMed Central  Google Scholar 

  95. Graziosi I, Tembo M, Kuate J, Muchugi A (2020) Pests and diseases of trees in Africa: a growing continental emergency. Plants People Planet 2:14–28

    Article  Google Scholar 

  96. Grégoire DM, Quiring DT, Royer L, Heard SB, Bauce É (2015) Indirect host-mediated effects of an exotic phloem-sap feeder on a native defoliator of balsam fir. For Ecol Manag 341:1–7

    Article  Google Scholar 

  97. Gustafson EJ, Keene R (2014) Predicting changes in forest composition and dynamics—landscape-scale process models. US Department of Agriculture, Forest Service, Climate Change Resource Center

  98. Gustafson EJ, Shvidenko AZ, Sturtevant BR, Scheller RM (2010) Predicting global change effects on forest biomass and composition in south-central Siberia. Ecol Appl 20:700–715

    PubMed  Article  PubMed Central  Google Scholar 

  99. Haavik LJ, Billings SA, Guldin JM, Stephen FM (2015) Emergent insects, pathogens and drought shape changing patterns in oak decline in North America and Europe. For Ecol Manag 354:190–205

    Article  Google Scholar 

  100. Hale BK, Herms DA, Hansen RC, Clausen TP, Arnold D (2005) Effects of drought stress and nutrient availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of poplar to two lymantriid defoliators. J Chem Ecol 31:2601–2620

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. Hanewinkel M, Breidenbach J, Neeff T, Kublin E (2008) Seventy-seven years of natural disturbances in a mountain forest area—the influence of storm, snow, and insect damage analysed with a long-term time series. Can J For Res 38:2249–2261

    Article  Google Scholar 

  102. Hansen EM, Johnson MC, Bentz BJ, Vandygriff JC, Munson AS (2016) Forest-landscape structure mediates effects of a spruce bark beetle (Dendroctonus rufipennis) outbreak on subsequent likelihood of burning in Alaskan boreal forest. For Ecol Manag 369:38–46

    Article  Google Scholar 

  103. Hansen EM, Johnson MC, Bentz BJ, James VC, Steven MA (2015) Fuel loads and simulated fire behavior in “old-stage” beetle-infested ponderosa pine of the Colorado Plateau. For Sci 61:644–664

    Article  Google Scholar 

  104. Hanula JL, Meeker JR, Miller DR, Barnard EL (2002) Association of wildfire with tree health and numbers of pine bark beetles, reproduction weevils and their associates in Florida. For Ecol Manag 170:233–247

    Article  Google Scholar 

  105. Hart SJ, Schoennagel T, Veblen TT, Chapman TB (2015a) Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proc Natl Acad Sci USA 112:4375–4380

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. Hart SJ, Veblen TT, Eisenhart KS, Jarvis D, Kulakowski D (2014) Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology 95:930–939

    PubMed  Article  PubMed Central  Google Scholar 

  107. Hart SJ, Veblen TT, Kulakowski D (2014b) Do tree and stand-level attributes determine susceptibility of spruce-fir forests to spruce beetle outbreaks in the early 21st century? For Ecol Manag 318:44–53

    Article  Google Scholar 

  108. Hart SJ, Veblen TT, Mietkiewicz N, Kulakowski D (2015b) Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation. PLoS ONE 10:1–17

    Google Scholar 

  109. Harvey BJ, Donato DC, Romme WH, Turner MG (2013) Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Ecology 94:2475–2486

    PubMed  Article  PubMed Central  Google Scholar 

  110. Harvey BJ, Donato DC, Romme WH, Turner MG (2014) Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Ecol Appl 24:1608–1625

    PubMed  Article  PubMed Central  Google Scholar 

  111. Harvey BJ, Donato DC, Turner MG (2014) Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proc Natl Acad Sci USA 111:15120–15125

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. Havašová M, Ferenčík J, Jakuš R (2017) Interactions between windthrow, bark beetles and forest management in the Tatra National Parks. For Ecol Manag 391:349–361

    Article  Google Scholar 

  113. Hayes CJ, DeGomez TE, McMillin JD, Anhold JA, Hofstetter RW (2008) Factors influencing pine engraver (Ips pini Say) colonization of ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) slash in Northern Arizona. For Ecol Manag 255:3541–3548

    Article  Google Scholar 

  114. Hessburg PF, Churchill DJ, Larson AJ, Haugo RD, Miller C, Spies TA, North MP, Povak NA, Belote RT, Singleton PH, Gaines WL, Keane RE, Aplet GH, Stephens SL, Morgan P, Bisson PA, Rieman BE, Salter RB, Reeves GH (2015) Restoring fire-prone Inland Pacific landscapes: seven core principles. Landsc Ecol 30:1805–1835

    Article  Google Scholar 

  115. Hicke J, Johnson MC, Hayes JL, Preisler HK (2012) Effects of bark beetle-caused tree mortality on wildfire. For Ecol Manag 271:81–90

    Article  Google Scholar 

  116. Hicke JA, Meddens AJH, Kolden CA (2015) Recent tree mortality in the Western United States from bark beetles and forest fires. For Sci 62:141–153

    Google Scholar 

  117. Hindmarch TD, Reid ML (2001) Thinning of mature lodgepole pine stands increases scolytid bark beetle abundance and diversity. Can J For Res 31:1502–1512

    Article  Google Scholar 

  118. Hoffman CM, Morgan P, Mell W, Parsons R, Strand E, Cook S (2012) Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle-caused tree mortality. For Sci 59:390–399

    Google Scholar 

  119. Hoffman C, Parsons R, Morgan P, Mell R (2012b) Numerical simulation of crown fire hazard following bark beetle-caused mortality in lodgepole pine forests. For Sci 58(2):178–188

    Article  Google Scholar 

  120. Hogg EH, Brandt JP, Kochtubajda B (2002) Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can J For Res 32:823–832

    Article  Google Scholar 

  121. Hollaus M, Vreugdenhil M (2019) Radar satellite imagery for detecting bark beetle outbreaks in forests. Curr For Rep 5:240–250

    Google Scholar 

  122. Holopainen JK, Mustaniemi A, Kainulainen P, Satka H, Oksanen J (1993) Conifer aphids in an air-polluted environment. I. Aphid density, growth and accumulation of sulphur and nitrogen by scots pine and Norway spruce seedlings. Environ Pollut 80:185–191

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. Holton MK, Lindroth RL, Nordheim EV (2003) Foliar quality influences tree–herbivore–parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137:233–244

    PubMed  Article  PubMed Central  Google Scholar 

  124. Howe E, Baker WL (2003) Landscape heterogeneity and disturbance interactions in a subalpine watershed in Northern Colorado, USA. Ann Assoc Am Geogr 93:797–813

    Article  Google Scholar 

  125. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  126. Hummel S, Agee JK (2003) Western spruce budworm defoliation effects on forest structure and potential fire behavior. Northwest Sci 77:159–170

    Google Scholar 

  127. Hunter MD, Forkner RE (1999) Hurricane damage influences foliar polyphenolics and subsequent herbivory on surviving trees. Ecology 80:2676–2682

    Article  Google Scholar 

  128. Itter MS, D’Orangeville L, Dawson A, Kneeshaw D, Duchesne L, Finley AO (2019) Boreal tree growth exhibits decadal-scale ecological memory to drought and insect defoliation, but no negative response to their interaction. J Ecol 107:1288–1301

    Article  Google Scholar 

  129. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    PubMed  Article  PubMed Central  Google Scholar 

  130. Jaime L, Batllori E, Margalef-Marrase J, Pérez Navarro MÁ, Lloret F (2019) Scots pine (Pinus sylvestris L.) mortality is explained by the climatic suitability of both host tree and bark beetle populations. For Ecol Manag 448:119–129

    Article  Google Scholar 

  131. James PMA, Fortin MJ, Sturtevant BR, Fall A, Kneeshaw D (2011) Modelling spatial interactions among fire, spruce budworm, and logging in the boreal forest. Ecosystems 14(1):60–75

    CAS  Article  Google Scholar 

  132. James PMA, Robert LE, Wotton BM, Martell DL, Fleming RA (2017) Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada. Ecol Appl 27:532–544

    PubMed  Article  PubMed Central  Google Scholar 

  133. Jenkins MJ (2011) Fuel and fire behavior in high-elevation five-needle pines affected by mountain pine beetle. In: Future of high-elevation, five-needle white pines in Western North America, pp 198–205

  134. Jenkins MJ, Runyon JB, Fettig CJ, Page WG, Bentz BJ (2014) Interactions among the mountain pine beetle, fires, and fuels. For Sci 60:489–501

    Article  Google Scholar 

  135. Johansson T, Hjältén J, Gibb H, Hilszczanski J, Stenlid J, Ball JP, Alinvi O, Danell K (2007) Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: implications for conservation strategies. For Ecol Manag 242:496–510

    Article  Google Scholar 

  136. Jolly WM, Parsons RA, Hadlow AM, Cohn GM, McAllister SS, Popp JB, Hubbard RM, Negron JF (2012) Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack. For Ecol Manag 269:52–59

    Article  Google Scholar 

  137. Jones ME, Hanlon CC, Paine TD (2015) Potential for interspecific competition between congeneric longhorned beetle species (Coleoptera: Cerambycidae) in an adventive environment. Environ Entomol 44:960–965

    Article  Google Scholar 

  138. Jorgensen CA, Jenkins MJ (2010) Fuel complex alterations associated with spruce beetle-induced tree mortality in intermountain spruce-fir forests, USA. For Sci. https://doi.org/10.1093/forestscience/57.3.232

    Article  Google Scholar 

  139. Joseph G, Kelsey RG, Peck RW, Niwa CG (2001) Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of central Oregon. J Chem Ecol 27:697–715

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. Keane RE, McKenzie D, Falk DA, Smithwick EAH, Miller C, Kellogg LKB (2015) Representing climate, disturbance, and vegetation interactions in landscape models. Ecol Model 309–310:33–47

    Article  Google Scholar 

  141. Kelsey RG, Gallego D, Sánchez-García FJ, Pajares J (2014) Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Can J For Res 44:554–561

    CAS  Article  Google Scholar 

  142. Kelsey RG, Joseph G (2001) Attraction of Scolytus unispinosus bark beetles to ethanol in water-stressed Douglas-fir branches. For Ecol Manag 144:229–238

    Article  Google Scholar 

  143. Kelsey RG, Joseph G (2003) Ethanol in ponderosa pine as an indicator of physiological injury from fire and its relationship to secondary beetles. Can J For Res 33:870–884

    CAS  Article  Google Scholar 

  144. Kelsey RG, Joseph G, Westlind D, Thies WG (2016) Ethanol and acetone from Douglas-fir roots stressed by Phellinus sulphurascens infection: Implications for detecting diseased trees and for beetle host selection. For Ecol Manag 360:261–272

    Article  Google Scholar 

  145. Kelsey RG, Manter DK (2004) Effect of Swiss needle cast on Douglas-fir stem ethanol and monoterpene concentrations, oleoresin flow, and host selection by the Douglas-fir beetle. For Ecol Manag 190:241–253

    Article  Google Scholar 

  146. Kelsey RG, Westlind DJ (2017a) Ethanol and primary attraction of red turpentine beetle in fire stressed ponderosa pine. For Ecol Manag 396:44–54

    Article  Google Scholar 

  147. Kelsey RG, Westlind DJ (2017b) Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. Bioscience 67:443–451

    Article  Google Scholar 

  148. Kenaley S, Mathiasen R, Harner EJ (2008) Mortality associated with a bark beetle outbreak in dwarf mistletoe-infested ponderosa pine stands in Arizona. West J Appl For 23:113–120

    Article  Google Scholar 

  149. Kennedy A, McCullough DG (2002) Phenology of the larger European pine shoot beetle Tomicus piniperda (L.) (Coleoptera: Scolytidae) in relation to native bark beetles and natural enemies in pine stands. Environ Entomol 31:261–272

    Article  Google Scholar 

  150. Kerns BK, Westlind DJ (2013) Effect of season and interval of prescribed burn on ponderosa pine butterfly defoliation patterns. Can J For Res 43:979–983

    Article  Google Scholar 

  151. Kidd NAC (1990) The effects of simulated acid mist on the growth rates of conifer aphids and the implications for tree health. J Appl Entomol 110:524–529

    Article  Google Scholar 

  152. Kingsolver JG, Arthur Woods H, Buckley LB, Potter KA, MacLean HJ, Higgins JK (2011) Complex life cycles and the responses of insects to climate change. Integr Comp Biol 51:719–732

    PubMed  Article  PubMed Central  Google Scholar 

  153. Kinney KK, Lindroth RL, Jung SM, Nordheim EV (1997) Effects of CO2 and NO3-availability on deciduous trees: phytochemistry and insect performance. Ecology 78:215–230

    Google Scholar 

  154. Kiritani K (2007) The impact of global warming and land-use change on the pest status of rice and fruit bugs (Heteroptera) in Japan. Glob Change Biol 13:1586–1595

    Article  Google Scholar 

  155. Klutsch JG, Battaglia MA, West DR, Costello SL, Negrón JF (2011) Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado. West J Appl For 26:101–109.

    Article  Google Scholar 

  156. Klutsch JG, Shamoun SF, Erbilgin N (2017) Drought stress leads to systemic induced susceptibility to a nectrotrophic fungus associated with mountain pine beetle in Pinus banksiana seedlings. PLoS ONE. https://doi.org/10.7939/DVN

    Article  PubMed  PubMed Central  Google Scholar 

  157. Koh LP (2007) Impacts of land use change on South-east Asian forest butterflies: a review. J Appl Ecol 44:703–713

    Article  Google Scholar 

  158. Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, Mathiasen R, Stewart JE, Weed AS (2016) Observed and anticipated impacts of drought on forest insects and diseases in the United States. For Ecol Manag 380:321–334

    Article  Google Scholar 

  159. Kopper BJ, Klepzig KD, Raffa KF (2004) Components of antagonism and mutualism in Ips pini–fungal interactions: relationship to a life history of colonizing highly stressed and dead trees. Environ Entomol 33:28–34

    Article  Google Scholar 

  160. Kopper BJ, Lindroth RL (2003) Responses of trembling aspen (Populus tremuloides) phytochemistry and Aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agric For Entomol 5:17–26

    Article  Google Scholar 

  161. Korasaki V, Braga RF, Zanetti R, Moreira FMS, Vaz-de-Mello FZ, Louzada J (2013) Conservation value of alternative land-use systems for dung beetles in Amazon: valuing traditional farming practices. Biodivers Conserv 22:1485–1499

    Article  Google Scholar 

  162. Kozlov MV, Zverev V, Zvereva EL (2017) Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: results of 26-year monitoring. Sci Total Environ 601–602:802–811

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  163. Kulakowski D, Jarvis D (2011) The influence of mountain pine beetle outbreaks and drought on severe wildfires in northwestern Colorado and southern Wyoming: a look at the past century. For Ecol Manag 262:1686–1696

    Article  Google Scholar 

  164. Kulakowski D, Jarvis D (2013) Low-severity fires increase susceptibility of lodgepole pine to mountain pine beetle outbreaks in Colorado. For Ecol Manag 289:544–550

    Article  Google Scholar 

  165. Kulakowski D, Jarvis D, Veblen TT, Smith J (2012) Stand-replacing fires reduce susceptibility of lodgepole pine to mountain pine beetle outbreaks in Colorado. J Biogeogr 39:2052–2060

    Article  Google Scholar 

  166. Kulakowski D, Matthews C, Jarvis D, Veblen TT (2013) Compounded disturbances in sub-alpine forests in western Colorado favour future dominance by quaking aspen (Populus tremuloides). J Veg Sci 24:168–176

    Article  Google Scholar 

  167. Kulakowski D, Veblen TT (2007) Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests. Ecology 88:759–769

    PubMed  Article  PubMed Central  Google Scholar 

  168. Kulakowski D, Veblen TT, Bebi P (2003) Effects of fire and spruce beetle outbreak legacies on the disturbance regime of a subalpine forest in Colorado. J Biogeogr 30:1445–1456

    Article  Google Scholar 

  169. Kulakowski D, Veblen TT, Beb P (2016) Fire severity controlled susceptibility to a 1940s spruce beetle outbreak in Colorado, USA. PLoS ONE 11:1–16

    Article  CAS  Google Scholar 

  170. Labandeira CC (2013) Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften 100:355–364

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. Land AD, Rieske LK (2006) Interactions among prescribed fire, herbivore pressure and shortleaf pine (Pinus echinata) regeneration following southern pine beetle (Dendroctonus frontalis) mortality. For Ecol Manag 235:260–269

    Article  Google Scholar 

  172. Larsson S, Björkman C (1993) Performance of chewing and phloem-feeding insects on stressed trees. Scand J For Res 8:550–559

    Article  Google Scholar 

  173. Leite MCA, Chen-Charpentier B, Agusto FB (2018) Maximizing tree harvesting benefit from forests under insect infestation disturbances. PLoS ONE. https://doi.org/10.1371/journal.pone.0200575

    Article  PubMed  PubMed Central  Google Scholar 

  174. Leverkus AB, Lindenmayer DB, Thorn S, Gustafsson L (2018) Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob Ecol Biogeogr 27:1140–1154

    Article  Google Scholar 

  175. Liang L, Hawbaker TJ, Zhu Z, Li X, Gong P (2016) Forest disturbance interactions and successional pathways in the Southern Rocky Mountains. For Ecol Manag 375:35–45

    Article  Google Scholar 

  176. Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777

    CAS  Article  Google Scholar 

  177. Linn RR, Sieg CH, Hoffman CM, Winterkamp JL, McMillin JD (2013) Modeling wind fields and fire propagation following bark beetle outbreaks in spatially-heterogeneous pinyon-juniper woodland fuel complexes. Agric For Meteorol 173:139–153

    Article  Google Scholar 

  178. Lloret F, Kitzberger T (2018) Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. Glob Change Biol 24:1952–1964

    Article  Google Scholar 

  179. Loch AD, Matsuki M (2010) Effects of defoliation by Eucalyptus weevil, Gonipterus scutellatus, and chrysomelid beetles on growth of Eucalyptus globulus in southwestern Australia. For Ecol Manag 260:1324–1332

    Article  Google Scholar 

  180. Loehman RA, Keane RE, Holsinger LM, Wu Z (2017) Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates. Landsc Ecol 32:1447–1459

    Article  Google Scholar 

  181. Lombardero MJ, Ayres MP (2011) Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula. Environ Entomol 40:1007–1018

    PubMed  Article  PubMed Central  Google Scholar 

  182. Lombardero MJ, Ayres MP, Ayres BD (2006) Effects of fire and mechanical wounding on Pinus resinosa resin defenses, beetle attacks, and pathogens. For Ecol Manag 225:349–358

    Article  Google Scholar 

  183. Louis M, Grégoire JC, Pélisson PF (2014) Exploiting fugitive resources: How long-lived is “fugitive”? Fallen trees are a long-lasting reward for Ips typographus (Coleoptera, Curculionidae, Scolytinae). For Ecol Manag 331:129–134

    Article  Google Scholar 

  184. Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395

    Article  Google Scholar 

  185. Lucash MS, Scheller RM, Sturtevant BR, Gustafson EJ, Kretchun AM, Foster JR (2018) More than the sum of its parts: how disturbance interactions shape forest dynamics under climate change. Ecosphere. https://doi.org/10.1002/ecs2.2293

    Article  Google Scholar 

  186. Lusebrink I, Evenden ML, Blanchet FG, Cooke JEK, Erbilgin N (2011) Effect of water stress and fungal inoculation on monoterpene emission from an historical and a new pine host of the mountain pine beetle. J Chem Ecol 37:1013–1026

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  187. Lynch HJ, Moorcroft PR (2008) A spatiotemporal Ripley’s K-function to analyze interactions between spruce budworm and fire in British Columbia, Canada. Can J For Res 38:3112–3119

    Article  Google Scholar 

  188. Lynch HJ, Renkin RA, Crabtree RL, Moorcroft PR (2006) The influence of previous mountain pine beetle (Dendroctonus ponderosae) activity on the 1988 Yellowstone fires. Ecosystems 9:1318–1327

    Article  Google Scholar 

  189. Macquarrie CJK, Cooke BJ (2011) Density-dependent population dynamics of mountain pine beetle in thinned and unthinned stands. Can J For Res. https://doi.org/10.1139/x11-007

    Article  Google Scholar 

  190. Maino JL, Kong JD, Hoffmann AA, Barton MG, Kearney MR (2016) Mechanistic models for predicting insect responses to climate change. Curr Opin Insect Sci 17:81–86

    PubMed  Article  PubMed Central  Google Scholar 

  191. Makoto K, Kamata N, Kamibayashi N, Koike T, Tani H (2012) Bark-beetle-attacked trees produced more charcoal than unattacked trees during a forest fire on the Kenai Peninsula, Southern Alaska. Scand J For Res 27:30–35

    Article  Google Scholar 

  192. Malesky DM, Bentz BJ, Brown GR, Brunelle AR, Buffington JM, Chappell LM, Derose RJ, Guyon JC, Jorgensen CL, Loehman RA, Lowrey LL, Lynch AM, Matyjasik M, Mcmillin JD, Mercado JE, Morris JL, Jose F, Padgett WG, Progar RA, Randall CB (2018) Effects of climate change on ecological disturbances. In: Climate change vulnerability and adaptation in the intermountain region: Part II. Gen. Tech. Rep. RMRS-GTR-375. US Department of Agriculture, Forest Service, Fort Collins, pp 199–263

  193. Maňák V, Björklund N, Lenoir L, Nordlander G (2015) The effect of red wood ant abundance on feeding damage by the pine weevil Hylobius abietis. Agric For Entomol 17:57–63

    Article  Google Scholar 

  194. Maňák V, Nordenhem H, Björklund N, Lenoir L, Nordlander G (2013) Ants protect conifer seedlings from feeding damage by the pine weevil Hylobius abietis. Agric For Entomol 15:98–105

    Article  Google Scholar 

  195. Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, Forster B, Grégoire JC, Hurling R, Nageleisen LM, Netherer S, Ravn HP, Weed A, Schroeder M (2017) Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography (Cph) 40:1426–1435

    Article  Google Scholar 

  196. Maroschek M, Rammer W, Lexer MJ (2015) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Change 15:1543–1555

    Article  Google Scholar 

  197. Martini X, Hughes MA, Killiny N, George J, Lapointe SL, Smith JA, Stelinski LL (2017) The fungus Raffaelea lauricola modifies behavior of its symbiont and vector, the redbay ambrosia beetle (Xyleborus glabratus), by altering host plant volatile production. J Chem Ecol 43:519–531

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  198. McCarley TR, Kolden CA, Vaillant NM, Hudak AT, Smith AMS, Kreitler J (2017) Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest. For Ecol Manag 391:164–175

    Article  Google Scholar 

  199. McCullough DG, Werner RA, Neumann D (1998) Fire and insects in northern and boreal forest ecosystems of North America. Annu Rev Entomol 43:107–127

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  200. McDonald EP, Agrell J, Lindroth RL (1999) CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia 119:389–399

    PubMed  PubMed Central  Google Scholar 

  201. McDowell NG, Allen CD, Marshall L (2010) Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob Change Biol 16:399–415

    Article  Google Scholar 

  202. McDowell MN, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N Phytol. https://doi.org/10.1111/j.1469-8137.2008.02436.x

    Article  Google Scholar 

  203. McNichol MBH, Montes CR, Barnes BF, Nowak JT, Villari C, Gandhi KJK (2019) Interactions between southern Ips bark beetle outbreaks, prescribed fire, and loblolly pine (Pinus taeda L.) mortality. For Ecol Manag 446:164–174

    Article  Google Scholar 

  204. McNulty SG, Boggs JL (2010) A conceptual framework: redefining forest soil’s critical acid loads under a changing climate. Environ Pollut 158:2053–2058

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  205. Meigs GW, Campbell JL, Zald HSJ, Bailey JD, Shaw DC, Kennedy RE (2015) Does wildfire likelihood increase following insect outbreaks in conifer forests? Ecosphere 6:art118

    Article  Google Scholar 

  206. Meigs GW, Zald HSJ, Campbell JL, Keeton WS, Kennedy RE (2016) Do insect outbreaks reduce the severity of subsequent forest fires? Environ Res Lett. https://doi.org/10.1088/1748-9326/11/4/045008

    Article  Google Scholar 

  207. Meijer SS, Whittaker RJ, Borges PAV (2011) The effects of land-use change on arthropod richness and abundance on Santa Maria Island (Azores): unmanaged plantations favour endemic beetles. J Insect Conserv 15:505–522

    Article  Google Scholar 

  208. Menges ES, Deyrup MA (2001) Postfire survival in south Florida slash pine: interacting effects of fire intensity, fire season, vegetation, burn size, and bark beetles. Int J Wildl Fire 10:53–63

    Article  Google Scholar 

  209. Mietkiewicz N, Kulakowski D (2016) Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA. Ecol Appl 26:2523–2535

    PubMed  Article  PubMed Central  Google Scholar 

  210. Mietkiewicz N, Kulakowski D, Veblen TT (2018) Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado. Ecol Appl 28:457–472

    PubMed  Article  PubMed Central  Google Scholar 

  211. Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 80-:349

    Google Scholar 

  212. Miller A, Rusnock P (1993) The rise and fall of the silvicultural hypothesis in spruce budworm (Choristoneura fumiferana) management in eastern Canada. For Ecol Manag 61:171–189

    Article  Google Scholar 

  213. Moise ERD, Lavigne MB, Johns RC (2019) Density has more influence than drought on spruce budworm (Choristoneura fumiferana) performance under outbreak conditions. For Ecol Manag 433:170–175

    Article  Google Scholar 

  214. Morán-Ordóñez A, Roces-Díaz JV, Otsu K, Ameztegui A, Coll L, Lefevre F, Retana J, Brotons L (2018) The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests. Reg Environ Change. https://doi.org/10.1007/s10113-018-1408-5

    Article  Google Scholar 

  215. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  216. Navarro L, Harvey AE, Ali A, Bergeron Y, Morin H (2018) A Holocene landscape dynamic multiproxy reconstruction: how do interactions between fire and insect outbreaks shape an ecosystem over long time scales? PLoS ONE 13:1–16

    Google Scholar 

  217. Negron F, Mcmillin JD, Anhold JA, Coulson D (2009) Bark beetle-caused mortality in a drought-affected ponderosa pine landscape.  For Ecol Manag 257:1353–1362

  218. Nitschke CR, Amoroso M, Coates KD, Astrup R (2012) The influence of climate change, site type, and disturbance on stand dynamics in northwest British Columbia, Canada. Ecosphere 3:art11

    Article  Google Scholar 

  219. Nowak JT, Meeker JR, Coyle DR, Steiner CA, Brownie C (2015) Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the southern pine beetle prevention program. J For 113:454–462

    Google Scholar 

  220. O’Connor CD, Lynch AM, Falk DA, Swetnam TW (2015) Post-fire forest dynamics and climate variability affect spatial and temporal properties of spruce beetle outbreaks on a Sky Island mountain range. For Ecol Manag 336:148–162

    Article  Google Scholar 

  221. Økland B, Nikolov C, Krokene P, Vakula J (2016) Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. For Ecol Manag 363:63–73

    Article  Google Scholar 

  222. Page W, Jenkins MJ (2007a) Predicted fire behavior in selected mountain pine beetle-infested lodgepole pine. For Sci 53:662–674

    Google Scholar 

  223. Page WG, Jenkins MJ (2007b) Mountain pine beetle-induced changes to selected lodgepole pine fuel complexes within the intermountain region. For Sci 53:507–518

    Google Scholar 

  224. Palokangas P, Neuvonen S (1995) The effects of simulated acid rain on growth and susceptibility to predation Phratora polaris (Col., Chrysomelidae). Environ Pollut 89:67–71

    Article  Google Scholar 

  225. Parker TJ, Clancy KM, Mathiasen RL (2006) Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agric For Entomol 8:167–189

    Article  Google Scholar 

  226. Pausas JG, Llovet J, Anselm R, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? A review Vegetation changes Shrublands dominated by resprouting species. Int J Wildl Fire 17:713–723

    Article  Google Scholar 

  227. Pawson SM, Marcot BG, Woodberry OG (2017) Predicting forest insect flight activity: a Bayesian network approach. PLoS ONE 12:1–23

    Article  CAS  Google Scholar 

  228. Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19167–19170

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  229. Percy K, Awmack C, Lindroth R, Kubiske M, Kopper B, Isebrands J, Pregitzer K, Hendrey G, Dickson R, Zak D, Oksanen E, Sober J, Harrington R, Karnosky D (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–408

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  230. Perera AH, Sturtevant BR, Buse LJ (2015) Simulation modeling of forest landscape disturbances: an overview. In: Simulation modeling of forest landscape disturbances. Springer, Cham, pp 1–15

  231. Perovich C, Sibold JS (2016) Forest composition change after a mountain pine beetle outbreak, Rocky Mountain National Park, CO, USA. For Ecol Manag 366:184–192

    Article  Google Scholar 

  232. Perrakis DDB, Lanoville R, Taylor SW, Hicks D (2014) Modeling wildfire spread in mountain pine beetle-affected forest stands, British Columbia, Canada. Fire Ecol 10:10–35

    Article  Google Scholar 

  233. Peters DPC, Bestelmeyer BT, Turner MG (2007) Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. Ecosystems 10:790–796

    Article  Google Scholar 

  234. Pinna C, Linaldeddu BT, Deiana V, Maddau L, Montecchio L, Lentini A (2019) Plant pathogenic fungi associated with Coraebus florentinus (Coleoptera: Buprestidae) attacks in declining oak forests. Forests. https://doi.org/10.3390/f10060488

    Article  Google Scholar 

  235. Pohl K, Hadley KS, Arabas KB (2006) Decoupling tree-ring signatures of climate variation, fire, and insect outbreaks in Central Oregon. Tree-Ring Res 62:37–50

    Article  Google Scholar 

  236. Potterf M, Bone C (2017) Simulating bark beetle population dynamics in response to windthrow events. Ecol Complex 32:21–30

    Article  Google Scholar 

  237. Powell EN, Townsend PA, Raffa KF (2012) Wildfire provides refuge from local extinction but is an unlikely driver of outbreaks by mountain pine beetle. Ecol Monogr 82:69–84

    Article  Google Scholar 

  238. Prichard SJ, Kennedy MC (2014) Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event. Ecol Appl 24:571–590

    PubMed  Article  PubMed Central  Google Scholar 

  239. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau ML, Nentwig W, Pergl J, Poboljšaj K, Rabitschi W, Roques A, Royr DB, Shirleys S, Solarzt W, Vilàu M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162

    PubMed  Article  PubMed Central  Google Scholar 

  240. Radeloff VC, Mladenoff DJ, Boyce MS (2000) Effects of interacting disturbances on landscape patterns: budworm defoliation and salvage logging. Ecol Appl 10:233–247)

    Article  Google Scholar 

  241. Radl A, Lexer MJ, Vacik H (2017) A Bayesian belief network approach to predict damages caused by disturbance agents. Forests. https://doi.org/10.3390/f9010015

    Article  Google Scholar 

  242. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517

    Article  Google Scholar 

  243. Rankin LJ, Borden JH (1991) Competitive interaction between the mountain pine beetle and the pine engraver in lodgepole. Can J For Res 21:1029–1036

    Article  Google Scholar 

  244. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  245. Reed SE, Juzwik J, English JT, Ginzel MD (2015) Colonization of artificially stressed black walnut trees by ambrosia beetle, bark beetle, and other weevil species (Coleoptera: Curculionidae) in Indiana and Missouri. Environ Entomol 44:1455–1464

    PubMed  Article  PubMed Central  Google Scholar 

  246. Renwick KM, Rocca ME, Stohlgren TJ (2016) Biotic disturbance facilitates range shift at the trailing but not the leading edge of lodgepole pine’s altitudinal distribution. J Veg Sci 27:780–788

    Article  Google Scholar 

  247. Restaino C, Young DJN, Estes B, Gross S, Wuenschel A, Meyer M, Safford H (2019) Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Ecol Appl 29:1–14

    Article  Google Scholar 

  248. Reyes GP, Kneeshaw D (2008) Moderate-severity disturbance dynamics in Abies balsameaBetula spp. forests: the relative importance of disturbance type and local stand and site characteristics on woody vegetation response. Écoscience 15:241–249

    Article  Google Scholar 

  249. Robert LE, Sturtevant BR, Cooke BJ, James PMA, Fortin MJ, Townsend PA, Wolter PT, Kneeshaw D (2018) Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm Choristoneura fumiferana. Ecography (Cph) 41:1556–1571

    Article  Google Scholar 

  250. Robert LE, Sturtevant BR, Kneeshaw D, James PMA, Fortin MJ, Wolter PT, Townsend PA, Cooke BJ (2020) Forest landscape structure influences the cyclic-eruptive spatial dynamics of forest tent caterpillar outbreaks. Ecosphere. https://doi.org/10.1002/ecs2.3096

    Article  Google Scholar 

  251. Rogers BM, Jantz P, Goetz SJ (2017) Vulnerability of eastern US tree species to climate change. Glob Change Biol 23:3302–3320

    Article  Google Scholar 

  252. Rosenberger DW, Venette RC, Aukema BH (2017) Development of an aggressive bark beetle on novel hosts: implications for outbreaks in an invaded range. J Appl Ecol 55:1526–1537

    Article  Google Scholar 

  253. Rossi FJ, Carter DR, Alavalapati JRR, Nowak JT (2011) Assessing landowner preferences for forest management practices to prevent the southern pine beetle: an attribute-based choice experiment approach. For Policy Econ 13:234–241

    Article  Google Scholar 

  254. Rossi S, Plourde P-Y, Krause C (2018) Does a spruce budworm outbreak affect the growth response of black spruce to a subsequent thinning? Front Plant Sci 9:1–8

    Article  Google Scholar 

  255. Roth SK, Lindroth RL (1994) Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia 98:133–138

    PubMed  Article  PubMed Central  Google Scholar 

  256. Roth S, Lindroth RL, Volin JC, Kruger EL (1998) Enriched atmospheric CO2 and defoliation: effects on. Glob Change Biol. https://doi.org/10.1046/j.1365-2486.1998.00164.x

    Article  Google Scholar 

  257. Rouault G, Candau J-N, Lieutier F, Nageleisen L-M, Martin J-C, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624

    Article  Google Scholar 

  258. Ryan KC, Amman GD (1996) Bark beetle activity and delayed tree mortality in the greater Yellowstone area following the 1988 Fires. In: Ecological implications of fire in Greater Yellowstone proceedings. International Association of Wildland Fire, Fairland, pp 151–158

  259. Saikkonen KT, Neuvonen S (1993) Effects of larval age and prolonged simulated acid rain on the susceptibility of European pine sawfly to virus infection. Oecologia 95:134–139

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  260. Saikkonen K, Neuvonen S, Kainulainen P (1995) Oviposition and larval performance of European pine sawfly in relation to irrigation, simulated acid rain and resin acid concentration in Scots pine. Oikos 74:273–282

    Article  Google Scholar 

  261. Sangüesa-Barreda G, Linares JC, Camarero JJ (2015) Reduced growth sensitivity to climate in bark-beetle infested Aleppo pines: connecting climatic and biotic drivers of forest dieback. For Ecol Manag 357:126–137

    Article  Google Scholar 

  262. Santoro AE, Lombardero MJ, Ayres MP, Ruel JJ (2001) Interactions between fire and bark beetles in an old growth pine forest. For Ecol Manag 144:245–254

    Article  Google Scholar 

  263. Scheller RM, Kretchun AM, Loudermilk EL, Hurteau MD, Weisberg PJ, Skinner C (2018) Interactions among fuel management, species composition, bark beetles, and climate change and the potential effects on forests of the Lake Tahoe basin. Ecosystems 21:643–656

    CAS  Article  Google Scholar 

  264. Schoennagel T, Veblen TT, Negron JF, Smith JM (2012) Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA. PLoS ONE. https://doi.org/10.1371/journal.pone.0030002

    Article  PubMed  PubMed Central  Google Scholar 

  265. Schwab O, Maness T, Bull G, Welham C, Seely B, Blanco J (2011) Modeling the timber supply impact of introducing weevil-resistant spruce in British Columbia with cellular automata. For Policy Econ 13:61–68

    Article  Google Scholar 

  266. Schwartzberg EG, Jamieson MA, Raffa KF, Reich PB, Montgomery RA, Lindroth RL (2014) Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia 175:1041–1049

    PubMed  Article  PubMed Central  Google Scholar 

  267. Schwilk DW, Knapp EE, Ferrenberg SM, Keeley JE, Caprio AC (2006) Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest. For Ecol Manag 232:36–45

    Article  Google Scholar 

  268. Seidl R, Donato DC, Raffa KF, Turner MG (2016) Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Proc Natl Acad Sci USA 113:13075–13080

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  269. Seidl R, Rammer W (2017) Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc Ecol 32:1485–1498

    PubMed  Article  PubMed Central  Google Scholar 

  270. Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17:2842–2852

    Article  Google Scholar 

  271. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402

    Article  Google Scholar 

  272. Shanahan E, Irvine KM, Thoma D, Wilmoth S, Ray A, Legg K, Shovic H (2016) Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability. Ecosphere. https://doi.org/10.1002/ecs2.1610

    Article  Google Scholar 

  273. Sieg CH, Linn RR, Pimont F, Hoffman CM, McMillin JD, Winterkamp J, Baggett LS (2017) Fires following bark beetles: factors controlling severity and disturbance interactions in ponderosa pine. Fire Ecol 13:1–23

    Article  Google Scholar 

  274. Simard M, Lajeunesse P (2015) The interaction between insect outbreaks and debris slides in a glacial valley of the Eastern Canadian Shield. Ecosystems 18:1281–1289

    Article  Google Scholar 

  275. Simard M, Romme WH, Griffin JM, Turner MG (2011) Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol Monogr 81:3–24

    Article  Google Scholar 

  276. Smith AL, Hewitt N, Klenk N, Bazely DR, Yan N, Wood S, Henriques I, MacLellan JI, Lipsig-Mummé C (2012) Effects of climate change on the distribution of invasive alien species in Canada: a knowledge synthesis of range change projections in a warming world. Environ Rev 20:1–16

    Article  Google Scholar 

  277. Smith MJ, Weinberger C, Bruna EM, Allesina S (2014) The scientific impact of nations: journal placement and citation performance. PLoS ONE 9:1–6

    Google Scholar 

  278. Speer JH, Kulakowski D (2017) Creating a buzz: insect outbreaks and disturbance interactions. Dendroecology: https://doi.org/10.4135/9781446247501.n1010

    Article  Google Scholar 

  279. Stadelmann G, Bugmann H, Wermelinger B, Bigler C (2014) Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For Ecol Manag 318:167–174

    Article  Google Scholar 

  280. Stevens-Rumann C, Morgan P, Chad H (2015) Bark beetles and wildfires: how does forest recovery change with repeated disturbances in mixed conifer forests? Ecosphere 6:art100

    Article  Google Scholar 

  281. Stiling P, Rossy AM, Hungate B, Dukstra P, Hinkle CR, Knott WM, Drake B (1999) Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecol Appl 9:240–244

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Sturtevant BR, Miranda BR, Shinneman DJ, Gustafson EJ, Wolter PT, Sturtevant B, Miranda BR, Shinneman DJ, Gustafson EJ, Wolter PT (2012) Comparing modern and presettlement forest dynamics of a subboreal wilderness: does spruce budworm enhance fire risk? Ecol Appl 22:1278–1296

    PubMed  Article  PubMed Central  Google Scholar 

  283. Su Q, NacLean DA, Needham TD (1996) The influence of hardwood content on balsam fir defoliation by spruce budworm. Can J For Res 26:1620–1628

    Article  Google Scholar 

  284. Suárez-Vidal E, Sampedro L, Voltas J, Serrano L, Notivol E, Zas R (2019) Drought stress modifies early effective resistance and induced chemical defences of Aleppo pine against a chewing insect herbivore. Environ Exp Bot 162:550–559

    Article  CAS  Google Scholar 

  285. Tabacaru CA, Erbilgin N (2015) Competitors and natural enemies may cumulatively mediate Dendroctonus ponderosae colonization of burned Pinus forests. For Ecol Manag 337:98–109

    Article  Google Scholar 

  286. Tabacaru CA, McPike SM, Erbilgin N (2015) Fire-mediated interactions between a tree-killing bark beetle and its competitors. For Ecol Manag 356:262–272

    Article  Google Scholar 

  287. Tabacaru CA, Park J, Erbilgin N (2016) Prescribed fire does not promote outbreaks of a primary bark beetle at low-density populations. J Appl Ecol 53:222–232

    Article  Google Scholar 

  288. Talucci AC, Krawchuk M (2019) Dead forests burning: the influence of beetle outbreaks on fire severity and legacy structure in sub-boreal forests. Ecosphere 10:e02744

    Article  Google Scholar 

  289. Taylor AR, Chen HYH, VanDamme L (2009) A review of forest succession models and their suitability for forest management planning. For Sci 55:23–36

    Google Scholar 

  290. Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402

    Article  Google Scholar 

  291. Temperli C, Hart SJ, Veblen TT, Kulakowski D, Hicks JJ, Andrus R (2014) Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains? For Ecol Manag 334:53–63

    Article  Google Scholar 

  292. Temperli C, Veblen TT, Hart SJ, Kulakowski D, Tepley AJ (2015) Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere 6:1–20

    Article  Google Scholar 

  293. Thistle HW, Peterson HG, Allwine G, Edburg SL, Lamb BK, Strom BL (2005) Pheromone movement in four stand thinning scenarios: high frequency plume observations. Pap. 051002. American Society of Agricultural Engineers, St. Joseph, Mich

  294. Thom D, Rammer W, Seidl R (2017) Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Change Biol 23:269–282

    Article  Google Scholar 

  295. Thom D, Seidl R, Steyrer G, Krehan H, Formayer H (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manag 307:293–302

    Article  Google Scholar 

  296. Torres-Muros L, Hódar JA, Zamora R (2017) Effect of habitat type and soil moisture on pupal stage of a Mediterranean forest pest (Thaumetopoea pityocampa). Agric For Entomol 19:130–138

    Article  Google Scholar 

  297. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849

    PubMed  Article  PubMed Central  Google Scholar 

  298. van Lierop P, Lindquist E, Sathyapala S, Franceschini G (2015) Global forest area disturbance from fire, insect pests, diseases and severe weather events. For Ecol Manag 352:78–88

    Article  Google Scholar 

  299. Veblen TT, Hadley KS, Nel EM, Kitzberger T, Reid M, Villalba R (2006) Disturbance regime and disturbance interactions in a Rocky Mountain subalpine forest. J Ecol 82:125

    Article  Google Scholar 

  300. Vepakomma U, Kneeshaw D, St-Onge B (2010) Interactions of multiple disturbances in shaping boreal forest dynamics: a spatially explicit analysis using multi-temporal LiDAR data and high-resolution imagery. J Ecol 98:526–539

    Article  Google Scholar 

  301. Verble RM, Stephan FM (2009) Occurrence of carpenter ants in Ozark forests in relation to prescribed fire and stand variables. South J Appl For 33:42–45

    Article  Google Scholar 

  302. Ward SF, Kees AM, Maddox MP, Montgomery RA, Aukema BH (2019) The role of simulated spring water stress in interactions between eastern larch and larch casebearer. Arthropod Plant Interact 13:621–633

    Article  Google Scholar 

  303. Ward NL, Masters GJ (2007) Linking climate change and species invasion: an illustration using insect herbivores. Glob Change Biol 13:1605–1615

    Article  Google Scholar 

  304. Watt GA, Fleming RA, Smith SM, Fortin MJ (2018) Spruce budworm (Choristoneura fumiferana Clem.) defoliation promotes vertical fuel continuity in Ontario’s boreal mixedwood forest. Forests. https://doi.org/10.3390/f9050256

    Article  Google Scholar 

  305. Watt GA, Stocks BJ, Fleming RA, Smith SM (2020) Stand breakdown and surface fuel accumulation due to spruce budworm (Choristoneura fumiferana) defoliation in the boreal mixedwood forest of central Canada. Can J For Res 9:1–9

    Google Scholar 

  306. Weed AS, Ayres MP, Hicke JA, Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83:441–470

    Article  Google Scholar 

  307. Wermelinger B, Rigling A, Schneider Mathis D, Dobbertin M (2008) Assessing the role of bark- and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol Entomol 33:239–249

    Article  Google Scholar 

  308. Westlind DJ, Kelsey RG (2019) Predicting post-fire attack of red turpentine or western pine beetle on ponderosa pine and its impact on mortality probability in Pacific Northwest forests. For Ecol Manag 434:181–192

    Article  Google Scholar 

  309. White PS, Pickett ST (1985) In: Pickett STA, White PSA (eds) The ecology of natural disturbance and patch dynamics. Academic Press, pp 3–13

  310. Williams RS, Lincoln DE, Thomas RB (1994) Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance. Oecologia 98:64–71

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  311. Wong CM, Daniels LD (2017) Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob Change Biol 23:1926–1941

    Article  Google Scholar 

  312. Woolley T, Shaw DC, Hollingsworth LT, Agne MC, Fitzgerald S, Eglitis A, Kurth L (2019) Beyond red crowns: complex changes in surface and crown fuels and their interactions 32 years following mountain pine beetle epidemics in south-central Oregon, USA. Fire Ecol. https://doi.org/10.1186/s42408-018-0010-z

    Article  Google Scholar 

  313. Xu J, Budde KB, Hansen OK, Thomsen IM, Ravn HP, Nielsen UB (2018) Do silver fir woolly adelgids (Dreyfusia nordmannianae) facilitate pathogen infestation with Neonectria neomacrospora on Christmas trees (Abies nordmanniana)? For Ecol Manag 424:396–405

    Article  Google Scholar 

  314. Yamazaki K (2011) Gone with the wind: trembling leaves may deter herbivory. Biol J Linn Soc 104:738–747

    Article  Google Scholar 

  315. Yoneya K, Kugimiya S, Takabayashi J (2014) Leaf beetle larvae, Plagiodera versicolora (Coleoptera: Chrysomelidae), show decreased performance on uninfested host plants exposed to airborne factors from plants infested by conspecific larvae. Appl Entomol Zool 49:249–253

    Article  Google Scholar 

  316. Zhang Q-H, Byers J, Zhang X‐D (1993) Influence of bark thickness, trunk diameter and height on reproduction of the longhorned beetle, Monochamus sutor (Col., Cerambycidae) in burned larch and pine. J Appl Entomol 115:145–154

    Article  Google Scholar 

Download references

Acknowledgements

This study was motivated, and ideas shaped thorough several inspirational talks with Garrett Meigs, Meg Krawchuk, David Shaw, Gabriela Ritokova, Rick G. Kelsey, Henry Lee, David Bell and Matthew Reilly that we deeply thank. This study was funded by the Spanish Government through the INMODES (CGL2017-89999-C2-2-R) and the European Union’s H2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No. 691149 (SuFoRun). A proofreading of the manuscript was completed by Proof Reading Service.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study. Idea for the article was originated by CQ, BL and JPMA. Study conception and design was realized by CQ and BL Literature search and data analysis was performed by CQ. The first draft of the document was written by CQ and all authors (CQ, AN, LJJ, JPMA, BL) commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Quim Canelles.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (XLSX 230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Canelles, Q., Aquilué, N., James, P.M.A. et al. Global review on interactions between insect pests and other forest disturbances. Landscape Ecol (2021). https://doi.org/10.1007/s10980-021-01209-7

Download citation

Keywords

  • Simulation modeling
  • Outbreak
  • Fire
  • Drought
  • Climate change
  • Landscape dynamics