Skip to main content

Advertisement

Log in

Local and landscape drivers of the number of individuals and genetic diversity of a microendemic and critically endangered salamander

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Conversion of forest ecosystems to human-modified landscapes threatens the persistence of forest-specialist species. However, the local and landscape drivers of population abundance and genetic diversity of these species are largely unknown, especially for elusive and critically endangered species, such as the salamander Pseudoeurycea robertsi—a species microendemic to the Nevado de Toluca volcano, Mexico.

Objectives

We assessed the relative influence of local- and landscape-scale habitat amount and habitat spatial configuration on the number of individuals and genetic diversity of P. robertsi. Given its low vagility, we expected stronger responses to local habitat amount than to landscape variables, with habitat configuration showing the weakest effects on all responses.

Methods

Using multiscale and multimodel inference approaches, we tested the relative effect of local habitat amount (fallen logs volume), landscape habitat amount (forest cover) and landscape configuration (forest edge density and forest fragmentation per se) on the number of salamanders and its genetic diversity.

Results

The number of individuals was more strongly related to local and landscape variables than genetic diversity. As predicted, local habitat amount showed stronger positive effects on number of individuals and number of alleles than forest cover. In addition, all response variables increased in landscapes with lower edge density. Fragmentation per se showed weak influence on all responses.

Conclusions

Fallen logs volume is a major driver of this forest-specialist salamander. Yet, edge density also shapes salamander populations, especially the number of individuals. Retaining fallen logs in forests and increasing forest core areas are critical for salamander conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arntzen JW, Smithson A, Oldham RS (1999) Marking and tissue sampling effects on body condition and survival in the newt Triturus cristatus. J Herpetol 33:567–576

    Article  Google Scholar 

  • Arredondo-León C, Muñoz-Jiménez J, García-Romero A (2008) Recent changes in landscape-dynamics trends in tropical highlands, central Mexico. Interciencia 33:569–577

    Google Scholar 

  • Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2017) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88

    Article  Google Scholar 

  • Bille T (2009) Field observations on the salamanders (Caudata: Ambystomatidae, Plethodontidae) of Nevado de Toluca, Mexico. Salamandra 45:155–164

    Google Scholar 

  • Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJ, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Calcagno V, Mazancourt C (2010) Glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29

    Article  Google Scholar 

  • Catenazzi A (2015) State of the world’s amphibians. Annu Rev Environ Resour 40:91–119

    Article  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    Article  PubMed  Google Scholar 

  • CONABIO, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (2000) Regionalización. http://www.conabio.gob.mx/conocimiento/regionalizacion/doctos/rtp_109.pdf. Accessed 5 Nov 2018

  • CONAPO (2010) Delimitación de las zonas metropolitanas de México http://www.conapo.gob.mx/en/CONAPO/Zonas_metropolitanas_2010. Accessed 5 Nov 2018

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJ (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Crump ML, Scott NJ Jr (1994) Visual encounter Surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MC (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, pp 84–92

    Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol 27:369–380

    Article  Google Scholar 

  • Davic RD, Welsh HH Jr (2004) On the ecological roles of salamanders. Annu Rev Ecol Evol Syst 35:405–434

    Article  Google Scholar 

  • De la Torre Y (1971) Volcanes de México. 2nd edition - Aguilar, México D.F

  • deMaynadier PG, Hunter ML (1998) Effects of silvicultural edges on the distribution and abundance of amphibians in Maine. Conserv Biol 12:340–352

    Article  Google Scholar 

  • DOF, Diario Oficial de la Federación Mexicana (2013): Decreto que reforma, deroga y adiciona diversas disposiciones del diverso publicado el 25 de enero de 1936, por el que se declaró Parque Nacional la montaña denominada “Nevado de Toluca” que fue modificado por el diverso publicado el 19 de febrero de 1937. http://dof.gob.mx/nota_detalle_popup.php?codigo=5315889. Accessed 5 Nov 2018

  • Eigenbrod F, Hecnar SJ, Fahrig L (2008) The relative effect of road traffic and forest cover on anuran populations. Biol Conserv 141:35–46

    Article  Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fahrig L, Arroyo-Rodríguez V, Bennett J, Boucher-Lalonde V, Cazeta E, Currie D, Eigenbrod F, Ford A, Jaeger J, Koper N, Martin A, Metzger JP, Morrison P, Rhodes J, Saunders D, Simberloff D, Smith A, Tischendorf L, Vellend M, Watling J (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186

    Article  Google Scholar 

  • Flageole S, Leclair R (1992) Demography of a salamander (Ambystoma maculatum) population studied by skeletochronology. CanJ Zool 70:740–749

    Article  Google Scholar 

  • Flores-Villela O, Canseco-Márquez L, Ochoa-Ochoa L (2010) Geographic distribution and conservation of the herpetofauna of the highlands of Central Mexico. In: Wilson LD, Towsend JH, Johnson JD (eds) Conservation of Mesoamerican Amphibians and Reptiles. Eagle Mountain Publishing Co., Utah, pp 303–321

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Franco-Maass S, Regil-García HH, González-Esquivel C, Nava-Bernal G (2006) Cambio de uso del suelo y vegetación en el Parque Nacional Nevado de Toluca, México, en el periodo 1972-2000. Invest Geog 61:38–57

    Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gamble LR, McGarigal K, Sigourney DB (2009) Timm BC (2009) Survival and breeding frequency in marbled salamanders (Ambystoma opacum): implications for spatio-temporal population dynamics. Copeia 2:394–407

    Article  Google Scholar 

  • Garrido-Garduño T, Vázquez-Domínguez E (2013) Métodos de análisis genéticos, espaciales y de conectividad en genética del paisaje. Rev Mex Biodivers 84:1031–1054

    Article  Google Scholar 

  • González-Fernández A, Manjarrez J, García-Vázquez U, D’Addario M, Sunny A (2018) Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt. PeerJ 6:e4618

    Article  PubMed  PubMed Central  Google Scholar 

  • Groombridge B, Jenkins M (2000) Global Biodiversity. Earth’s Living Resources in the 21st Century. World Conservation Monitoring Centre, Cambridge, U.K

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SAA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  PubMed  Google Scholar 

  • Hill M (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • IUCN SSC Amphibian Specialist Group (2016) Pseudoeurycea robertsi. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/species/59393/53983925. Accessed 12 Feb 2018

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landscape Ecol 27:929–941

    Article  Google Scholar 

  • Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881

    Article  PubMed  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landscape Ecol 31:951–968

    Article  Google Scholar 

  • Jaeger JA (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15:115–130

    Article  Google Scholar 

  • Jost L (2008) G(ST) and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapos V, Ganade G, Matsui E, Victoria RL (1993) ∂13C as an indicator of edge effects in tropical rainforest reserves. J Ecol 81:425–432

    Article  Google Scholar 

  • Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouki J, Löfman S, Martikainen P, Rouvinen S, Uotila A (2001) Forest fragmentation in Fennoscandia: linking habitat requirements of wood-associated threatened species to landscape and habitat changes. Scand J Forest Res 16:27–37

    Article  Google Scholar 

  • Laurance WF (1991) Edge effects in tropical forest fragments: application of a model for the design of nature reserves. Biol Conserv 57:205–219

    Article  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Lowe WH, Bolger DT (2002) Local and landscape-scale predictors of salamander abundance in New Hampshire headwater streams. Conserv Biol 16:183–193

    Article  Google Scholar 

  • Marcon E, Hérault B (2015) entropart: An R package to measure and partition diversity. http://cran.r-project.org/package=entropart

  • Marsh DM, Thakur KA, Bulka KC, Clarke LB (2004) Dispersal and colonization through open fields by a terrestrial, woodland salamander. Ecology 85:3396–3405

    Article  Google Scholar 

  • Mas J, Velázquez A, Díaz-Gallegos J, Mayorga-Saucedo R, Alcántara C, Bocco G, Castro R, Fernández T, Pérez-Vega A (2004) Assessing land use/cover changes: a nationwide multidate spatial database for Mexico. Int J Appl Earth Obs Geoinf 5:249–261

    Article  Google Scholar 

  • Mastretta-Yanes A, Cao R, Nicasio-Arzeta S, Quadri P, Escalante-Espinosa T, Arredondo L, Piñero D (2014) ¿Será exitosa la estrategia del cambio de categoría para mantener la biodiversidad del Nevado de Toluca? Oikos 12:7–17

    Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983

    Article  CAS  PubMed  Google Scholar 

  • McGarigal K, SA Cushman, E Ene (2012) FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landscape Ecol 31:1177–1194

    Article  Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. Irwin, Chicago

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291

    Article  CAS  PubMed  Google Scholar 

  • Nowakowski AJ, Watling JI, Thompson ME, Brusch GA, Catenazzi A, Whitfield SM, Kurz DJ, Suárez-Mayorga A, Aponte-Gutiérrez A, Donnelly MA, Todd BD (2018) Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol Lett 21:345–355

    Article  PubMed  Google Scholar 

  • Petranka JW, Eldridge ME, Haley KE (1993) Effects of timber harvesting on southern Appalachian salamanders. Conserv Biol 7:363–377

    Article  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA, Wearn O, Marsh C, Banks-Leite C, Butchart S, Arroyo-Rodríguez V, Barlow J, Cerezo A, Cisneros L, D’Cruze N, Faria D, Hadley A, Klingbeil B, Kormann U, Lens L, Rangel GM, Morante-Filho JC, Olivier P, Peters S, Pidgeon A, Ribeiro D, Scherber C, Schneider-Maunoury L, Struebig M, Urbina-Cardona N, Watling JI, Willig M, Wood E, Ewers R (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plunkett EB (2009) Conservation implications of a marbled salamander, Ambystoma opacum, metapopulation model. Master’s Thesis, Department of Environmental Conservation, University of Massachusetts Amherst

  • Polich RL, Searcy CA, Shaffer HE (2013) Effects of tail clipping on survivorship and growth of larval salamanders. J Wildl Manage 77:1420–1425

    Article  Google Scholar 

  • R Development Core Team (2017) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. http://www.r-project.org)

  • Russildi G, Arroyo-Rodríguez V, Hernández-Ordóñez O, Pineda E, Reynoso VH (2016) Species-and community-level responses to habitat spatial changes in fragmented rainforests: assessing compensatory dynamics in amphibians and reptiles. Biodivers Conserv 25:375–392

    Article  Google Scholar 

  • Sánchez-de-Jesús HA, Arroyo-Rodríguez V, Andresen E, Escobar F (2016) Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecol 31:843–854

    Article  Google Scholar 

  • Sánchez-Jasso JM, Aguilar-Miguel X, Medina-Castro JP, Sierra-Domínguez G (2013) Species richness of vertebrates in a reforested woodland of the Nevado de Toluca National Park, Mexico. Rev Mex Biodivers 84:360–373

    Article  Google Scholar 

  • Savage WK, Fremier AK, Bradley Shaffer H (2010) Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Mol Ecol 19:3301–3314

    Article  PubMed  Google Scholar 

  • SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo. Diario Oficial de la Federación. http://dof.gob.mx/nota_detalle.php?codigo=5173091&fecha=30/12/2010. Accessed 5 Nov 2018

  • Skelly DK, Werner EE, Cortwright SA (1999) Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80:2326–2337

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Toscana-Aparicio A, Granados-Ramírez R (2015) Recategorización del Parque Nacional Nevado de Toluca. Polit Cult 44:79–105

    Google Scholar 

  • Tuff KT, Tuff T, Davies KF (2016) A framework for integrating thermal biology into fragmentation research. Ecol Lett 19:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Buskirk J (2005) Local and landscape influence on amphibian occurrence and abundance. Ecology 86:1936–1947

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Velo-Antón G, Windfield JC, Zamudio K, Parra-Olea G (2009) Microsatellite markers for Pseudoeurycea leprosa, a plethodontid salamander endemic to the Transmexican Neovolcanic Belt. Conserv Genet Resour 1:5–7

    Article  Google Scholar 

  • Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278

    Article  PubMed  Google Scholar 

  • Vos CC, Chardon JP (1998) Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J Appl Ecol 35:44–56

    Article  Google Scholar 

  • Wang IJ, Savage WK, Bradley Shaffer H (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank IGECEM for the SPOT images and Francisco Reyna-Sáenz, Fabiola Judith Gandarilla-Aizpuro and Carmen Galán-Acedo for their help with SPOT images processing. A.G.-F. obtained a scholarship from CONACyT. A.S received financial support from the Secretary of Research and Advanced Studies (SYEA) of the Universidad Autónoma del Estado de México (Grant No. 4732/2019CIB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea González-Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Fernández, A., Arroyo-Rodríguez, V., Ramírez-Corona, F. et al. Local and landscape drivers of the number of individuals and genetic diversity of a microendemic and critically endangered salamander. Landscape Ecol 34, 1989–2000 (2019). https://doi.org/10.1007/s10980-019-00871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00871-2

Keywords

Navigation