Skip to main content

Advertisement

Log in

Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Land surface temperature (LST) directly responds to incoming solar radiation and is strongly influenced by vertical urban structures, such as trees and buildings that provide shade. Conventional LST-planar land-cover assessments do not explicitly address the vertical dimension of the “urbanscape” and therefore do not capture the heterogeneity of solar radiation exposure of planar surfaces adequately.

Objectives

To fill this gap, this study compares and integrates novel spherical land-cover fractions derived from Google Street View (GSV) with the conventional planar land-cover fractions in estimating daytime and nighttime LST variations in the Phoenix metropolitan area, AZ.

Methods

The GSV spherical dataset was created using big data and machine learning techniques. The planar land cover was classified from 1 m NAIP imagery. Ordinal least square (OLS) and geographically weighted regression (GWR) were used to assess the relationship between LST and urban form (spherical and planar fractions) at the block group level. Social-demographic variables were also added provide the most comprehensive assessment of LST.

Results

The GSV spherical fractions provide better LST estimates than the planar land-cover fractions, because they capture the multi-layer tree crown and vertical wall influences that are missing from the bird-eye view imagery. The GWR regression further improves model fit versus the OLS regression (R2 increased from 0.6 to 0.8).

Conclusions

GSV and spatial regression (GWR) approaches improve the specificity of LST identified by neighborhoods in Phoenix metro-area by accounting for shading. This place-specific information is critical for optimizing diverse cooling strategies to combat heat in desert cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Google Scholar 

  • Boone CG, Cadenasso ML, Grove JM, Schwarz K, Buckley GL (2010) Landscape, vegetation characteristics, and group identity in an urban and suburban watershed: why the 60s matter. Urban Ecosyst 13(3):255–271

    Google Scholar 

  • Brazel A, Selover N, Vose R, Heisler G (2000) The tale of two climates Baltimore and Phoenix urban LTER sites. Climate Res 15(2):123–135

    Google Scholar 

  • Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol 25(1):17–33

    Google Scholar 

  • Cai H, Xu X (2017) Impacts of built-up area expansion in 2D and 3D on regional surface temperature. Sustainability 9(10):1862

    Google Scholar 

  • Charlton M, Fotheringham S, Brunsdon C (2009) Geographically weighted regression. White paper. National Centre for Geocomputation. National University of Ireland Maynooth

  • Chow WT, Brennan D, Brazel AJ (2012a) Urban heat island research in Phoenix, Arizona: theoretical contributions and policy applications. Bull Am Meteor Soc 93(4):517–530

    Google Scholar 

  • Chow WT, Chuang WC, Gober P (2012b) Vulnerability to extreme heat in metropolitan Phoenix: spatial, temporal, and demographic dimensions. Prof Geogr 64(2):286–302

    Google Scholar 

  • Connors JP, Galletti CS, Chow WT (2013) Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecol 28(2):271–283

    Google Scholar 

  • Da Silva AR, Fotheringham AS (2016) The multiple testing issue in geographically weighted regression. Geogr Anal 48(3):233–247

    Google Scholar 

  • Eliasson I, Offerle B, Grimmond CSB, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40(1):1–16

    CAS  Google Scholar 

  • Forman RT (2016) Urban ecology principles: are urban ecology and natural area ecology really different? Landsc Ecol 31(8):1653–1662

    Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, New Jersey

    Google Scholar 

  • Fotheringham AS, Yang W, Kang W (2017) Multiscale geographically weighted regression (mgwr). Ann Am Assoc Geogr 107(6):1247–1265

    Google Scholar 

  • Gál T, Lindberg F, Unger J (2009) Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theoret Appl Climatol 95(1–2):111–123

    Google Scholar 

  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S, Kahle AB (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36(4):1113–1126

    Google Scholar 

  • Gober P, Brazel A, Quay R, Myint S, Grossman-Clarke S, Miller A, Rossi S (2009) Using watered landscapes to manipulate urban heat island effects: how much water will it take to cool Phoenix? J Am Planning Assoc 76(1):109–121

    Google Scholar 

  • Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63(11):2847–2863

    PubMed  Google Scholar 

  • Harlan SL, Declet-Barreto JH, Stefanov WL, Petitti DB (2012) Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ Health Persp 121(2):197–204

    Google Scholar 

  • Hondula DM, Georgescu M, Balling RC (2014) Challenges associated with projecting urbanization-induced heat-related mortality. Sci Total Environ 490:538–544

    CAS  PubMed  Google Scholar 

  • Huang G, Cadenasso ML (2016) People, landscape, and urban heat island: dynamics among neighborhood social conditions, land cover and surface temperatures. Landscape Ecol 31(10):2507–2515

    Google Scholar 

  • Hulley GC, Hughes CG, Hook SJ (2012) Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data. J Geophys Res 117:D23

    Google Scholar 

  • Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114(3):504–513

    Google Scholar 

  • Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecol 22(3):353–365

    Google Scholar 

  • Jenerette GD, Harlan SL, Buyantuev A, Stefanov WL, Declet-Barreto J, Ruddell BL, Myint S, Kaplan S, Li X (2016) Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landscape Ecol 31(4):745–760

    Google Scholar 

  • JPL (2001) ASTER higher-level product user guide, advanced spaceborne thermal emission and reflection radiometer. Jet Propulsion Laboratory, California Institute of Technology

  • Kane K, Connors JP, Galletti CS (2014) Beyond fragmentation at the fringe: a path-dependent, high-resolution analysis of urban land cover in Phoenix, Arizona. Appl Geogr 52:123–134

    Google Scholar 

  • Krayenhoff ES, Voogt JA (2016) Daytime thermal anisotropy of urban neighbourhoods: morphological causation. Remote Sensing 8(2):108

    Google Scholar 

  • Larson KL, Casagrande D, Harlan SL, Yabiku ST (2009) Residents’ yard choices and rationales in a desert city: social priorities, ecological impacts, and decision tradeoffs. Environ Manage 44(5):921–937

    PubMed  Google Scholar 

  • Li X, Kamarianakis Y, Ouyang Y, Turner BL II, Brazel A (2017) On the association between land system architecture and land surface temperatures: evidence from a Desert Metropolis—Phoenix, Arizona, USA. Landsc Urban Plan 163:107–120

    Google Scholar 

  • Li X, Li W, Middel A, Harlan SL, Brazel AJ, Turner BL II (2016) Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sens Environ 174:233–243

    Google Scholar 

  • Li X, Myint SW, Zhang Y, Galletti C, Zhang X, Turner BL II (2014) Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography. Int J Appl Earth Obs Geoinf 33:321–330

    CAS  Google Scholar 

  • Li X, Ratti C, Seiferling I (2018) Quantifying the shade provision of street trees in urban landscape: a case study in Boston, USA, using Google Street View. Landsc Urban Plan 169:81–91

    Google Scholar 

  • Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sensing Environ 115(12):3249–3263

    Google Scholar 

  • Liu W, Feddema J, Hu L, Zung A, Brunsell N (2017) Seasonal and diurnal characteristics of land surface temperature and major explanatory factors in Harris County, Texas. Sustainability 9(12):2324

    Google Scholar 

  • Mandanici E, Conte P, Girelli V (2016) Integration of aerial thermal imagery, LiDAR data and ground surveys for surface temperature mapping in urban environments. Remote Sensing 8(10):880

    Google Scholar 

  • McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett. https://doi.org/10.1029/2010GL042845

    Article  Google Scholar 

  • Middel A, Häb K, Brazel AJ, Martin CA, Guhathakurta S (2014) Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape Urban Plan 122:16–28

    Google Scholar 

  • Middel A, Krayenhoff ES (under review) Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Sci Total Environ

  • Middel A, Lukasczyk J, Maciejewski R (2017) Sky view factors from synthetic fisheye photos for thermal comfort routing—a case study in Phoenix, Arizona. Urban Plan 2(1):19

    Google Scholar 

  • Middel A, Lukasczyk J, Maciejewski R, Demuzere M, Roth M (2018) Sky view factor footprints for urban climate modeling. Urban Clim 25:120–134

    Google Scholar 

  • Middel A, Lukasczyk J, Zakrzewski S, Arnold M, Maciejewski R (2019) Urban form and composition of street canyons: a human-centric big data and deep learning approach. Landscape Urban Plan 183:122–132

    Google Scholar 

  • Middel A, Selover N, Hagen B, Chhetri N (2016) Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. Int J Biometeorol 60(12):1849–1861

    PubMed  PubMed Central  Google Scholar 

  • Myint SW, Wentz EA, Brazel AJ, Quattrochi DA (2013) The impact of distinct anthropogenic and vegetation features on urban warming. Landscape Ecol 28(5):959–978

    Google Scholar 

  • Myint SW, Zheng B, Talen E, Fan C, Kaplan S, Middel A, Brazel A (2015) Does the spatial arrangement of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosyst Health Sustain 1(4):1–15

    Google Scholar 

  • Oke TR (1981) Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J Climatol 1(3):237–254

    Google Scholar 

  • Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates. Cambridge University Press, Cambridge

    Google Scholar 

  • Prince SD, Goetz SJ, Dubayah RO, Czajkowski KP, Thawley M (1998) Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using advanced very high-resolution radiometer satellite observations: comparison with field observations. J Hydrol 212–213:230–249

    Google Scholar 

  • Richards DR, Edwards PJ (2017) Quantifying street tree regulating ecosystem services using Google Street View. Ecol Ind 77:31–40

    Google Scholar 

  • Sailor DJ (2011) A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int J Climatol 31(2):189–199

    Google Scholar 

  • Steyn DG, Hay JE, Watson ID, Johnson GT (1986) The determination of sky view-factors in urban environments using video imagery. J Atmos Ocean Technol 3(4):759–764

    Google Scholar 

  • Stisen S, Sandholt I, Nørgaard A, Fensholt R, Eklundh L (2007) Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens Environ 110(2):262–274

    Google Scholar 

  • Stoll MJ, Brazel AJ (1992) Surface-air temperature relationships in the urban environment of Phoenix, Arizona. Phys Geogr 13(2):160–179

    Google Scholar 

  • Su YF, Foody GM, Cheng KS (2012) Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc Urban Plan 107(2):172–180

    Google Scholar 

  • Svensson MK (2004) Sky view factor analysis–implications for urban air temperature differences. Meteorol Appl 11(3):201–211

    Google Scholar 

  • Turner BL II (2017) Land system architecture for urban sustainability: new directions for land system science illustrated by application to the urban heat island problem. J Land Use Sci 12(6):689–697

    Google Scholar 

  • Unger J (2004) Intra-urban relationship between surface geometry and urban heat island: review and new approach. Clim Res 27:253–264

    Google Scholar 

  • Vancutsem C, Ceccato P, Dinku T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114(2):449–465

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384

    Google Scholar 

  • Wang C, Middel A, Myint SW, Kaplan S, Brazel AJ, Lukasczyk J (2018) Assessing local climate zones in arid cities: the case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS J Photogr Remote Sens 141:59–71

    Google Scholar 

  • Wentz EA, Rode S, Li X, Tellman EM, Turner BL (2016) Impact of Homeowner Association (HOA) landscaping guidelines on residential water use. Water Resour Res 52(5):3373–3386

    Google Scholar 

  • Zhang Y, Murray AT, Turner BL II (2017) Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc Urban Plan 165:162–171

    Google Scholar 

  • Zhou W, Pickett ST, Cadenasso ML (2017a) Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Landscape Ecol 32(1):15–30

    Google Scholar 

  • Zhou W, Wang J, Cadenasso ML (2017b) Effects of the spatial configuration of trees on urban heat mitigation: a comparative study. Remote Sens Environ 195:1–12

    Google Scholar 

Download references

Acknowledgements

This research was supported by Technische Universität Kaiserslautern, Grant “Microclimate Data Collection, Analysis, and Visualization”, the Gilbert F. White Fellowship, the Graduate. School Completion Fellowship, the Central Arizona-Phoenix Long-Term Ecological Research program (NSF Grant No. BCS-1026865), the National Science Foundation (NSF) under Grant No. SES-0951366, NSF IMEE Grant No. 1635490, NSF DMS Grant No. 1419593 and USDA NIFA Grant No. 2015-67003-23508. The research was undertaken in the Environmental Remote Sensing and Geoinformatics Lab, Arizona State University, AZ. We thank for the valuable inputs from our reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujia Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Middel, A. & Turner, B.L. Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression. Landscape Ecol 34, 681–697 (2019). https://doi.org/10.1007/s10980-019-00794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00794-y

Keywords

Navigation