Effect of landscape connectivity on plant communities: a review of response patterns

Abstract

Context

Fragmentation in agricultural landscapes is considered as a major threat to biodiversity. Thus, ecological corridors are deployed at multiple scales to increase connectivity. However, there is limited consensus about their efficiency, especially for plants.

Objectives

We assimilated existing knowledge to assess whether and how landscape connectivity impacts plant communities.

Methods

We reviewed published literature across more than 20 years, providing an overview on the influence of connectivity on plant communities.

Results

We found that landscape connectivity has a varying and complex influence on the composition and diversity of plant communities (i.e. community taxonomic structure), due to the multiplicity of factors that modulate its effect. Our understanding of how of landscape connectivity impacts the dispersal of plants is improved by using biological traits (i.e. community functional structure). Finally, we showed that landscape connectivity promotes actual dispersal between connected communities.

Conclusions

This review emphasises the pertinence of trait-based and actual dispersal approaches to improve our understanding and ability to predict the effect of connectivity loss on plant communities, allowing us to identify new prospects for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aavik T, Holderegger R, Bolliger J (2014) The structural and functional connectivity of the grassland plant Lychnis flos-cuculi. Heredity 112:471–478. https://doi.org/10.1038/hdy.2013.120

    CAS  Article  PubMed  Google Scholar 

  2. Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133:212–224. https://doi.org/10.1016/j.biocon.2006.06.006

    Article  Google Scholar 

  3. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247. https://doi.org/10.1016/S0169-2046(02)00242-6

    Article  Google Scholar 

  4. Allen TFH, Starr TB (1988) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  5. Andersson E, Nilsson C (2002) Temporal variation in the drift of plant litter and propagules in a small boreal river. Freshw Biol 47:1674–1684. https://doi.org/10.1046/j.1365-2427.2002.00925.x

    Article  Google Scholar 

  6. Andreasen C, Stryhn H, Streibig JC (1996) Decline of the flora in Danish arable fields. J Appl Ecol 33:619–626. https://doi.org/10.2307/2404990

    Article  Google Scholar 

  7. Archer S, Pyke DA (1991) Plant-animal interactions affecting plant establishment and persistence on revegetated rangeland. J Range Manag 44:558–565. https://doi.org/10.2307/4003036

    Article  Google Scholar 

  8. Arellano-Rivas A, De-Nova JA, Munguía-Rosas MA (2016) Patch isolation and shape predict plant functional diversity in a naturally fragmented forest. J Plant Ecol. https://doi.org/10.1093/jpe/rtw119

    Article  Google Scholar 

  9. Auffret AG, Rico Y, Bullock JM, Hooftman DAP, Pakeman RJ, Soons MB, Suárez-Esteban A, Traveset A, Wagner H, Cousins SAO (2017) Plant functional connectivity – integrating landscape structure and effective dispersal. J Ecol. https://doi.org/10.1111/1365-2745.12742

    Article  Google Scholar 

  10. Ayram CAC, Mendoza ME, Etter A, Salicrup DRP (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr Earth Environ 40:7–37. https://doi.org/10.1177/0309133315598713

    Article  Google Scholar 

  11. Baessler C, Klotz S (2006) Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric Ecosyst Environ 115:43–50. https://doi.org/10.1016/j.agee.2005.12.007

    Article  Google Scholar 

  12. Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252. https://doi.org/10.1111/j.1523-1739.1998.98036.x

    Article  Google Scholar 

  13. Bennett AF (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN-The World Conservation Union, Gland, Cambridge

    Book  Google Scholar 

  14. Bennett AJ, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264. https://doi.org/10.1016/j.biocon.2006.06.008

    Article  Google Scholar 

  15. Betbeder J, Hubert-Moy L, Burel F, Corgne S, Baudry J (2015) Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar. Ecol Indic 52:545–557. https://doi.org/10.1016/j.ecolind.2014.11.009

    Article  Google Scholar 

  16. Betbeder J, Nabucet J, Pottier E, Baudry J, Corgne S, Hubert-Moy L (2014) Detection and characterization of hedgerows using TerraSAR-X Imagery. Remote Sens 6:3752–3769. https://doi.org/10.3390/rs6053752

    Article  Google Scholar 

  17. Boedeltje G, Bakker JP, Bekker RM, Van Groenendael JM, Soesbergen M (2003) Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. J Ecol 91:855–866. https://doi.org/10.1046/j.1365-2745.2003.00820.x

    Article  Google Scholar 

  18. Boedeltje G, Bakker JP, Ten Brinke A, Van Groenendael JM, Soesbergen M (2004) Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. J Ecol 92:786–796. https://doi.org/10.1111/j.0022-0477.2004.00906.x

    Article  Google Scholar 

  19. Bornette G, Amoros C, Lamouroux N (1998) Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshw Biol 39:267–283. https://doi.org/10.1046/j.1365-2427.1998.00273.x

    Article  Google Scholar 

  20. Bowne DR, Bowers MA (2004) Interpatch movements in spatially structured populations: a literature review. Landsc Ecol 19:1–20. https://doi.org/10.1023/B:LAND.0000018357.45262.b9

    Article  Google Scholar 

  21. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809. https://doi.org/10.1111/j.1365-2664.2010.01828.x

    Article  Google Scholar 

  22. Brudvig LA (2016) Interpreting the effects of landscape connectivity on community diversity. J Veg Sci 27:4–5. https://doi.org/10.1111/jvs.12365

    Article  Google Scholar 

  23. Brudvig LA, Damschen EI, Tewksbury JJ, Haddad NM, Levey DJ (2009) Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proc Natl Acad Sci 106:9328–9332. https://doi.org/10.1073/pnas.0809658106

    Article  PubMed  Google Scholar 

  24. Burel F, Baudry J (1999) Ecologie du paysage. Concepts, méthodes et applications. Editions TEC et DOC, Paris

  25. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536. https://doi.org/10.1890/1540-9295(2004)002%5b0529:ACGTCM%5d2.0.CO;2

    Article  Google Scholar 

  26. Chetkiewicz C-LB, Clair CCS, Boyce MS (2006) Corridors for conservation: integrating pattern and process. Annu Rev Ecol Evol Syst 37:317–342. https://doi.org/10.1146/annurev.ecolsys.37.091305.110050

    Article  Google Scholar 

  27. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. https://doi.org/10.1071/BT02124

    Article  Google Scholar 

  28. Cousins SAO, Ohlson H, Eriksson O (2007) Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landsc Ecol 22:723–730. https://doi.org/10.1007/s10980-006-9067-1

    Article  Google Scholar 

  29. Cousins SAO, Vanhoenacker D (2011) Detection of extinction debt depends on scale and specialisation. Biol Conserv 144:782–787. https://doi.org/10.1016/j.biocon.2010.11.009

    Article  Google Scholar 

  30. Damschen EI, Baker DV, Bohrer G, Nathan R, Orrock JL, Turner JR, Brudvig LA, Haddad NM, Levey DJ, Tewksbury JJ (2014) How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc Natl Acad Sci 111:3484–3489. https://doi.org/10.1073/pnas.1308968111

    CAS  Article  PubMed  Google Scholar 

  31. Damschen EI, Brudvig LA, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ (2008) The movement ecology and dynamics of plant communities in fragmented landscapes. Proc Natl Acad Sci 105:19078–19083. https://doi.org/10.1073/pnas.0802037105

    Article  PubMed  Google Scholar 

  32. Damschen EI, Haddad NM, Orrock JL, Tewksbury JJ, Levey DJ (2006) Corridors increase plant species richness at large scales. Science 313:1284–1286. https://doi.org/10.1126/science.1130098

    CAS  Article  PubMed  Google Scholar 

  33. De Ryck DJR, Robert EMR, Schmitz N, Van der Stocken T, Di Nitto D, Dahdouh-Guebas F, Koedam N (2012) Size does matter, but not only size: two alternative dispersal strategies for viviparous mangrove propagules. Aquat Bot 103:66–73. https://doi.org/10.1016/j.aquabot.2012.06.005

    Article  Google Scholar 

  34. Diamond JM (1972) Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest pacific islands. Proc Natl Acad Sci 69:3199–3203. https://doi.org/10.1073/pnas.69.11.3199

    CAS  Article  PubMed  Google Scholar 

  35. Dzwonko Z, Loster S (1988) Species richness of small woodlands on the western Carpathian foothills. Vegetatio 76:15–27. https://doi.org/10.1007/BF00047384

    Article  Google Scholar 

  36. Eriksson O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258. https://doi.org/10.2307/3546063

    Article  Google Scholar 

  37. Evju M, Blumentrath S, Skarpaas O, Stabbetorp OE (2015) Plant species occurrence in a fragmented grassland landscape: the importance of species traits. Biodivers Conserv 24:547–561. https://doi.org/10.1007/s10531-014-0835-y

    Article  Google Scholar 

  38. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  39. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663. https://doi.org/10.1111/jbi.12130

    Article  Google Scholar 

  40. Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 66:1762–1768. https://doi.org/10.2307/2937372

    Article  Google Scholar 

  41. Favre-Bac L, Ernoult A, Mony C, Rantier Y, Nabucet J, Burel F (2014) Connectivity and propagule sources composition drive ditch plant metacommunity structure. Acta Oecologica 61:57–64. https://doi.org/10.1016/j.actao.2014.10.006

    Article  Google Scholar 

  42. Favre-Bac L, Lamberti-Raverot B, Puijalon S, Ernoult A, Burel F, Guillard L, Mony C (2017a) Plant dispersal traits determine hydrochorous species tolerance to connectivity loss at the landscape scale. J Veg Sci 28:605–615. https://doi.org/10.1111/jvs.12518

    Article  Google Scholar 

  43. Favre-Bac L, Mony C, Burel F, Seimandi-Corda G, Ernoult A (2017b) Connectivity drives the functional diversity of plant dispersal traits in agricultural landscapes: the example of ditch metacommunities. Landsc Ecol 32:2029–2040. https://doi.org/10.1007/s10980-017-0564-1

    Article  Google Scholar 

  44. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280. https://doi.org/10.1111/j.1466-8238.2007.00287.x

    Article  Google Scholar 

  45. Fletcher RJ, Burrell NS, Reichert BE, Vasudev D, Austin JD (2016) Divergent perspectives on landscape connectivity reveal consistent effects from genes to communities. Curr Landsc Ecol Rep 1:67–79. https://doi.org/10.1007/s40823-016-0009-6

    Article  Google Scholar 

  46. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

    Article  Google Scholar 

  47. Fukami T, Nakajima M (2013) Complex plant–soil interactions enhance plant species diversity by delaying community convergence. J Ecol 101:316–324. https://doi.org/10.1111/1365-2745.12048

    Article  Google Scholar 

  48. García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manag 261:154–161. https://doi.org/10.1016/j.foreco.2010.09.047

    Article  Google Scholar 

  49. Gignac LD, Dale MRT (2007) Effects of size, shape, and edge on vegetation in remnants of the upland boreal mixed-wood forest in agro-environments of Alberta, Canada. Can J Bot 85:273–284. https://doi.org/10.1139/B07-018

    Article  Google Scholar 

  50. Gilbert-Norton L, Wilson R, Stevens JR, Beard KH (2010) A meta-analytic review of corridor effectiveness. Conserv Biol 24:660–668. https://doi.org/10.1111/j.1523-1739.2010.01450.x

    Article  PubMed  Google Scholar 

  51. Godefroid S, Koedam N (2003) How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Glob Ecol Biogeogr 12:287–298. https://doi.org/10.1046/j.1466-822X.2003.00035.x

    Article  Google Scholar 

  52. Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260. https://doi.org/10.1111/j.1654-1103.2006.tb02444.x

    Article  Google Scholar 

  53. Groves CR, Jensen DB, Valutis LL, Redford KH, Shaffer ML, Scott JM, Baumgartner JV, Higgins JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conservation science into Practice. A seven-step framework for developing regional plans to conserve biological diversity, based upon principles of conservation biology and ecology, is being used extensively by the nature conservancy to identify priority areas for conservation. BioScience 52:499–512. https://doi.org/10.1641/0006-3568(2002)052%5b0499:PFBCPC%5d2.0.CO;2

    Article  Google Scholar 

  54. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  55. Haddad NM, Tewksbury JJ (2006) Impacts of corridors on populations and communities. In: Crooks KR, Sanjayan M (eds) Connectivity Conservation: maintaining connections for nature. Cambridge University Press, Cambridge, pp 390–415

    Google Scholar 

  56. Haddad NM, Bowne DR, Cunningham A, Levey DJ, Sargent S, Spira T (2003) Corridor use by diverse taxa. Ecology 84:609–615. https://doi.org/10.1890/0012-9658(2003)084%5b0609:CUBDT%5d2.0.CO;2

    Article  Google Scholar 

  57. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Son D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. https://doi.org/10.1126/sciadv.1500052

    Article  PubMed  PubMed Central  Google Scholar 

  58. Haddad NM, Hudgens B, Damschen EI, Levey DJ, Orrock JL, Tewksbury JJ, Weldon AJ (2011) Assessing positive and negative ecological effects of corridors. In: Liu J, Hull V, Morzillo AT, Wiens JA (eds) Sources, Sinks and Sustainability. Cambridge University Press, Cambridge, pp 475–503

    Google Scholar 

  59. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162. https://doi.org/10.2307/5591

    Article  Google Scholar 

  60. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. https://doi.org/10.1111/j.1461-0248.2005.00841.x

    Article  PubMed  Google Scholar 

  61. Herben T, Goldberg DE (2014) Community assembly by limiting similarity vs. competitive hierarchies: testing the consequences of dispersion of individual traits. J Ecol 102:156–166. https://doi.org/10.1111/1365-2745.12181

    Article  Google Scholar 

  62. Higgins SI, Nathan R, Cain ML (2003) Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 84:1945–1956. https://doi.org/10.1890/01-0616

    Article  Google Scholar 

  63. Honnay O, Hermy M, Coppin P (1999) Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for conservation and reforestation. Biol Conserv 87:73–84. https://doi.org/10.1016/S0006-3207(98)00038-X

    Article  Google Scholar 

  64. Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160. https://doi.org/10.1016/j.tree.2009.10.001

    Article  PubMed  Google Scholar 

  65. Johst K, Brandl R, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98:263–270. https://doi.org/10.1034/j.1600-0706.2002.980208.x

    Article  Google Scholar 

  66. Katoh K, Sakai S, Takahashi T (2009) Factors maintaining species diversity in satoyama, a traditional agricultural landscape of Japan. Biol Conserv 142:1930–1936. https://doi.org/10.1016/j.biocon.2009.02.030

    Article  Google Scholar 

  67. Kleijn D, Kohler F, Báldi A, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and landuse intensity in Europe. Proc Biol Sci 276:903–909. https://doi.org/10.1098/rspb.2008.1509

    CAS  Article  PubMed  Google Scholar 

  68. Kleijn D, Verbeek M (2000) Factors affecting the species composition of arable field boundary vegetation. J Appl Ecol 37:256–266. https://doi.org/10.1046/j.1365-2664.2000.00486.x

    Article  Google Scholar 

  69. Koen EL, Bowman J, Walpole AA (2012) The effect of cost surface parameterization on landscape resistance estimates. Mol Ecol Resour 12:686–696. https://doi.org/10.1111/j.1755-0998.2012.03123.x

    Article  PubMed  Google Scholar 

  70. Kolb A, Diekmann M (2005) Effects of life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19:929–938. https://doi.org/10.1111/j.1523-1739.2005.00065.x

    Article  Google Scholar 

  71. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärter M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571. https://doi.org/10.1016/j.tree.2009.04.011

    Article  PubMed  Google Scholar 

  72. Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–478. https://doi.org/10.1016/S0169-5347(97)01219-6

    CAS  Article  PubMed  Google Scholar 

  73. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  74. Levey DJ, Bolker BM, Tewksbury JJ, Sargent S, Haddad NM (2005) Effects of landscape corridors on seed dispersal by birds. Science 309:146–148. https://doi.org/10.1126/science.1111479

    CAS  Article  PubMed  Google Scholar 

  75. Lindborg R (2007) Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J Ecol 95:555–564. https://doi.org/10.1111/j.1365-2745.2007.01232.x

    Article  Google Scholar 

  76. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845. https://doi.org/10.1890/04-0367

    Article  Google Scholar 

  77. Lindgren JP, Cousins SAO (2017) Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landsc Ecol 32:1895–1906. https://doi.org/10.1007/s10980-017-0544-5

    Article  Google Scholar 

  78. Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491. https://doi.org/10.1016/j.tree.2011.04.009

    Article  PubMed  Google Scholar 

  79. Luoto M, Rekolainen S, Aakkula J, Pykälä J (2003) Loss of plant species richness and habitat connectivity in grasslands associated with agricultural change in Finland. AMBIO J Hum Environ 32:447–452. https://doi.org/10.1579/0044-7447-32.7.447

    Article  Google Scholar 

  80. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385. https://doi.org/10.1086/282505

    Article  Google Scholar 

  81. MacArthur RH, Wilson E (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  82. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. https://doi.org/10.1890/07-1861.1

    Article  PubMed  Google Scholar 

  83. Minor ES, Gardner RH (2011) Landscape connectivity and seed dispersal characteristics inform the best management strategy for exotic plants. Ecol Appl Publ Ecol Soc Am 21:739–749

    Google Scholar 

  84. Minor ES, Tessel SM, Engelhardt KAM, Lookingbill TR (2009) The role of landscape connectivity in assembling exotic plant communities: a network analysis. Ecology 90:1802–1809. https://doi.org/10.1890/08-1015.1

    Article  PubMed  Google Scholar 

  85. Moggridge HL, Gurnell AM, Mountford JO (2009) Propagule input, transport and deposition in riparian environments: the importance of connectivity for diversity. J Veg Sci 20:465–474. https://doi.org/10.1111/j.1654-1103.2009.05498.x

    Article  Google Scholar 

  86. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145. https://doi.org/10.2307/3071919

    Article  Google Scholar 

  87. Morato RG, Ferraz KMPM de B, de Paula RC, de Campos CB (2014) Identification of Priority Conservation Areas and Potential Corridors for Jaguars in the Caatinga Biome, Brazil. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0092950

  88. Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  89. Mouquet N, Loreau M (2003) Community patterns in source-sink metacommunities. Am Nat 162:544–557

    Article  Google Scholar 

  90. Mouquet N, Miller TE, Daufresne T, Kneitel JM (2006) Consequences of varying regional heterogeneity in source–sink metacommunities. Oikos 113:481–488. https://doi.org/10.1111/j.2006.0030-1299.14582.x

    Article  Google Scholar 

  91. Murphy HT, Lovett-Doust J (2004) Context and connectivity in plant metapopulations and landscape mosaics: does the matrix matter? Oikos 105:3–14. https://doi.org/10.1111/j.0030-1299.2004.12754.x

    Article  Google Scholar 

  92. Naaf T, Kolk J (2015) Colonization credit of post-agricultural forest patches in NE Germany remains 130–230 years after reforestation. Biol Conserv 182:155–163. https://doi.org/10.1016/j.biocon.2014.12.002

    Article  Google Scholar 

  93. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788. https://doi.org/10.1126/science.1124975

    CAS  Article  PubMed  Google Scholar 

  94. Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413. https://doi.org/10.1038/nature00844

    CAS  Article  PubMed  Google Scholar 

  95. Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev Camb Philos Soc 85:837–858. https://doi.org/10.1111/j.1469-185X.2010.00129.x

    Article  PubMed  Google Scholar 

  96. O’Neill RV, Deangelis DL, Waide JB, Allen TFH (1986) A Hierarchical Concept of Ecosystems. Princeton University Press, Princeton

    Google Scholar 

  97. Orrock JL, Damschen EI (2005) Corridors cause differential seed predation. Ecol Appl 15:793–798. https://doi.org/10.1890/04-1129

    Article  Google Scholar 

  98. Orrock JL, Danielson BJ, Burns MJ, Levey DJ (2003) Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology 84:2589–2599. https://doi.org/10.1890/02-0439

    Article  Google Scholar 

  99. Ovaskainen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61:285–295. https://doi.org/10.1006/tpbi.2002.1586

    Article  PubMed  Google Scholar 

  100. Pacala SW, Tilman D (1994) Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am Nat 143:222–257. https://doi.org/10.1086/285602

    Article  Google Scholar 

  101. Pärtel M, Szava-Kovats R, Zobel M (2011) Dark diversity: shedding light on absent species. Trends Ecol Evol 26:124–128. https://doi.org/10.1016/j.tree.2010.12.004

    Article  PubMed  Google Scholar 

  102. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967. https://doi.org/10.1007/s10980-006-0013-z

    Article  Google Scholar 

  103. Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Linn Soc 96:65–82. https://doi.org/10.1007/BF00317508

    Article  Google Scholar 

  104. Piessens K, Honnay O, Hermy M (2005) The role of fragment area and isolation in the conservation of heathland species. Biol Conserv 122:61–69. https://doi.org/10.1016/j.biocon.2004.05.023

    Article  Google Scholar 

  105. Piessens K, Honnay O, Nackaerts K, Hermy M (2004) Plant species richness and composition of heathland relics in north-western Belgium: evidence for a rescue-effect? J Biogeogr 31:1683–1692. https://doi.org/10.2307/3554767

    Article  Google Scholar 

  106. Pollux BJA, Luteijn A, Van Groenendael JM, Ouborg NJ (2009) Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw Biol 54:64–76. https://doi.org/10.1111/j.1365-2427.2008.02100.x

    Article  Google Scholar 

  107. Pyke DA, Archer S (1991) Plant-plant interactions affecting plant establishment and persistence on revegetated rangeland. J Range Manag 44:550–557. https://doi.org/10.2307/4003036

    Article  Google Scholar 

  108. Rayfield B, Fortin M-J, Fall A (2010) The sensitivity of least-cost habitat graphs to relative cost surface values. Landsc Ecol 25:519–532. https://doi.org/10.1007/s10980-009-9436-7

    Article  Google Scholar 

  109. Riibak K, Reitalu T, Tamme R, Helm A, Gerhold P, Znamenskiy S, Bengtsson K, Rosén E, Prentice HC, Pärtel M (2015) Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography 38:713–721. https://doi.org/10.1111/ecog.01312

    Article  Google Scholar 

  110. Rossetti MR, Tscharntke T, Aguilar R, Batáry P (2017) Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical meta-analysis. Ecol Lett 20:264–272. https://doi.org/10.1111/ele.12723

    Article  PubMed  Google Scholar 

  111. Sandström UG (2002) Green infrastructure planning in Urban Sweden. Plan Pract Res 17:373–385. https://doi.org/10.1080/02697450216356

    Article  Google Scholar 

  112. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103. https://doi.org/10.1016/j.landurbplan.2007.03.005

    Article  Google Scholar 

  113. Scanlan M (1981) Biogeography of forest plants in the Prairie-Forest Ecotone in Western Minnesota. In: Burges RL, Sharpe DM (eds) Forest Island Dynamics in Man-dominated Landscapes. Springer, Berlin, pp 97–124

    Google Scholar 

  114. Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc Ecol 26:529–540. https://doi.org/10.1007/s10980-011-9579-1

    Article  Google Scholar 

  115. Simberloff D, Cox J (1987) Consequences and costs of conservation corridors. Conserv Biol 1:63–71. https://doi.org/10.1111/j.1523-1739.1987.tb00010.x

    Article  Google Scholar 

  116. Soomers H, Winkel DN, Du Y, Wassen MJ (2010) The dispersal and deposition of hydrochorous plant seeds in drainage ditches. Freshw Biol 55:2032–2046. https://doi.org/10.1111/j.1365-2427.2010.02460.x

    Article  Google Scholar 

  117. Sorensen AE (1986) Seed dispersal by adhesion. Annu Rev Ecol Syst 17:443–463. https://doi.org/10.1146/annurev.es.17.110186.002303

    Article  Google Scholar 

  118. Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591. https://doi.org/10.1111/j.1365-294X.2010.04657.x

    Article  PubMed  Google Scholar 

  119. Stoate C, Boatman N, Borralho R, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63:337–365. https://doi.org/10.1006/jema.2001.0473

    CAS  Article  PubMed  Google Scholar 

  120. Stöcklin J, Winkler E (2004) Optimum reproduction and dispersal strategies of a clonal plant in a metapopulation: a simulation study with Hieracium pilosella. Evol Ecol 18:563–584. https://doi.org/10.1007/s10682-004-5144-6

    Article  Google Scholar 

  121. Suárez-Esteban A, Delibes M, Fedriani JM (2013) Barriers or corridors? The overlooked role of unpaved roads in endozoochorous seed dispersal. J Appl Ecol 50:767–774. https://doi.org/10.1111/1365-2664.12080

    Article  Google Scholar 

  122. Sullivan LL, Johnson BL, Brudvig LA, Haddad NM (2011) Can dispersal mode predict corridor effects on plant parasites? Ecology 92:1559–1564. https://doi.org/10.1890/10-1116.1

    Article  PubMed  Google Scholar 

  123. Tackenberg O (2003) Modeling long-distance dispersal of plant diaspores by wind. Ecol Monogr 73:173–189. https://doi.org/10.2307/3100012

    Article  Google Scholar 

  124. Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. In: Connectivity Conservation: maintaining connections for nature. Cambridge University Press, Cambridge, pp 29–43

    Google Scholar 

  125. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573. https://doi.org/10.2307/3544927

    Article  Google Scholar 

  126. Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci 99:12923–12926. https://doi.org/10.1073/pnas.202242699

    CAS  Article  PubMed  Google Scholar 

  127. Thiele J, Buchholz S, Schirmel J (2017) Using resistance distance from circuit theory to model dispersal through habitat corridors. J Plant Ecol rtx004. https://doi.org/10.1093/jpe/rtx004

  128. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66. https://doi.org/10.1038/371065a0

    Article  Google Scholar 

  129. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x

    Article  Google Scholar 

  130. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87:661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x

    Article  PubMed  Google Scholar 

  131. Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landsc Urban Plan 81:167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001

    Article  Google Scholar 

  132. van der Valk AG (1981) Succession in wetlands: a Gleasonian approach. Ecology 62:688–696. https://doi.org/10.2307/1937737

    Article  Google Scholar 

  133. Vellend M, Myers JA, Gardescu S, Marks PL (2003) Dispersal of trillium seeds by deer: implications for long-distance migration of forest herbs. Ecology 84:1067–1072. https://doi.org/10.1890/0012-9658(2003)084%5b1067:DOTSBD%5d2.0.CO;2

    Article  Google Scholar 

  134. Verheyen K, Vellend M, Calster HV, Peterken G, Hermy M (2004) Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology 85:3302–3312. https://doi.org/10.1890/04-0395

    Article  Google Scholar 

  135. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  136. Vittoz P, Engler R (2007) Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helvetica 117:109–124. https://doi.org/10.1007/s00035-007-0797-8

    Article  Google Scholar 

  137. Weiher E, Keddy PA (1995) The assembly of experimental wetland plant communities. Oikos 73:323–335. https://doi.org/10.2307/3545956

    Article  Google Scholar 

  138. Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000. https://doi.org/10.2307/1941449

    Article  Google Scholar 

  139. Wilson EO, Willis EO (1975) Applied biogeography. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 522–534

    Google Scholar 

  140. Zacharias D, Brandes D (1990) Species area-relationships and frequency: floristical data analysis of 44 isolated woods in northwestern Germany. Vegetation 88:21–29. https://doi.org/10.2307/20038634

    Article  Google Scholar 

  141. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797. https://doi.org/10.1007/s10980-012-9737-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Fondation de France (BISCO project). We thank the two anonymous referees for their constructive work and remarks on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Uroy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uroy, L., Ernoult, A. & Mony, C. Effect of landscape connectivity on plant communities: a review of response patterns. Landscape Ecol 34, 203–225 (2019). https://doi.org/10.1007/s10980-019-00771-5

Download citation

Keywords

  • Plant communities
  • Traits
  • Seed dispersal
  • Actual dispersal
  • Ecological corridors