Skip to main content

Advertisement

Log in

Fragmentation patterns of the Caatinga drylands

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Biodiversity is modulated by the spatial structure of the landscape. Thus, landscape metrics can be useful indicators of biota integrity and vulnerability, helping in conservation and management decisions.

Objective

We performed the first quantitative analysis of the spatial structure of the Caatinga drylands. We estimated the habitat amount and the fragmentation pattern of this region using a multi-scale perspective.

Methods

Using the Brazilian official database of native remnants, we calculated the number and percentage of remaining fragments per size class and we describe how habitat amount changes along the landscape. By simulating different dispersal capacities, we estimated the functional connectivity among remnants. We also calculated the cumulative core area as a function of different edge effect widths.

Results

Caatinga is subdivided into 47,100 fragments. Although 91% of them are smaller than 500 ha, 720 fragments are larger than 10,000 ha, corresponding to 78% of the remaining vegetation. Potentially, 95% of the vegetation is accessible to species that can cross 1000 m of matrix. With one kilometer of edge effect, the core area is reduced to a quarter of the remaining vegetation. The habitat amount analyzes reinforced the regional differences in the spatial distribution of the remnants.

Conclusions

Caatinga remains well connected for species with moderate and high dispersal capacities. However much of its remaining area is vulnerable to anthropogenic disturbances. Expansion of the protected area network and effective natural resource management to avoid overexploitation of the remnants are key strategies for maintaining the Caatinga biodiversity and its services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abensperg-Traun M, Smith GT, Arnold GW, Steven DE (1996) The effects of habitat fragmentation and livestock-grazing on animal communities in remnants of gimlet Eucalyptus salubris woodland in the Western Australian wheatbelt. I. Arthropods. J Appl Ecol. https://doi.org/10.2307/2404770

    Article  Google Scholar 

  • Allen AM, Singh NJ (2016) Linking movement ecology with wildlife management and conservation. Front Ecol Evol. https://doi.org/10.3389/fevo.2015.00155

    Article  Google Scholar 

  • Almeida-Cortez JS, Tavares FM, Schulz K, Pereira RCA, Cierjacks A (2016) Floristic survey of the Caatinga in areas with different grazing intensities, Pernambuco, Northeast Brazil. J Environ Anal Progress 1:43–51

    Article  Google Scholar 

  • Alves RRN, Mendonça LET, Confessor MVA, Vieira WLS, Lopes LCS (2009) Hunting strategies used in the semi-arid region of northeastern Brazil. J Ethnobiol Ethnomed 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves RRN, Feijó F, Barboza RRD, Souto WMS, Fernandes-Ferreira H, Cordeiro-Estrela P, Langguth A (2016) Game mammals of the Caatinga biome. Ethnobiol Conserv 5:1–51

    Google Scholar 

  • Andrén H (1992) Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. Ecology 73:794–804

    Article  Google Scholar 

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Araújo Filho JA (2013) Manejo pastoril sustentável da Caatinga. Cidade Gráfica e Editora Ltda, Recife

    Google Scholar 

  • Arroyo-Rodríguez V, Pineda E, Escobar F, Benítez-Malvido J (2009) Value of small patches in the conservation of plant-species diversity in highly fragmented rainforest. Conserv Biol 23:729–739

    Article  PubMed  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22:1117–1129

    Article  Google Scholar 

  • Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA, Bruscagin RT, Condez TH, Dixo M, Igari AT, Martensen AC, Metzger JP (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Barboza RR, Lopes S, Souto W, Fernandes-Ferreira H, Alves R (2016) The role of game mammals as bushmeat in the Caatinga, northeast Brazil. Ecol Soc 21:2

    Article  Google Scholar 

  • Bascompte J, Solé RV (1996) Habitat fragmentation and extinction thresholds in spatially explicit models. J Anim Ecol 65:465–473

    Article  Google Scholar 

  • Bitencourt C, Rapini A (2013) Centres of endemism in the Espinhaço range: identifying cradles¸ and museums of Asclepiadoideae (Apocynaceae). Syst Biodivers 11:525–536

    Article  Google Scholar 

  • Brazil (2018a) Decreto 9336 de 5 April 2018. Cria o Parque Nacional do Boqueirão da Onça, localizado nos Municípios de Sento Sé, Juazeiro, Sobradinho e Campo Formoso, Estado da Bahia http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Decreto/D9336.htm

  • Brazil (2018b) Decreto 9337 de 5 April 2018. Cria a Área de Proteção Ambiental do Boqueirão da Onça, localizada nos Municípios de Sento Sé, Juazeiro, Sobradinho, Campo Formoso, Umburanas e Morro do Chapéu, Estado da Bahia. http://www2.camara.leg.br/legin/fed/decret/2018/decreto-9337-5-abril-2018-786420-publicacaooriginal-155184-pe.html

  • Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJ, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757

    Article  Google Scholar 

  • Brooker L, Brooker M, Cale P (1999) Animal dispersal in fragmented habitat: measuring habitat connectivity, corridor use, and dispersal mortality. Conserv Ecol 3:4. http://www.consecol.org/vol3/iss1/art4/

  • Brooks T, Balmford A (1996) Atlantic forest extinctions. Nature 380:115

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  PubMed  CAS  Google Scholar 

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manage 59:265–278

    Article  Google Scholar 

  • CDB (2010) COP decision X/2. Strategic plan for biodiversity 2011–2020. http://www.cbd.int/decision/cop/?id=12268. Accessed 10 Jan 2017

  • Costa RG, Almeida CC, Pimenta Filho EC, Holanda Júnior EV, Santos NM (2008) Caracterização do sistema de produção caprino e ovino na região semi-árida do estado da Paraíba, Brasil. Archivos de Zootecnia 57:195–205

    Google Scholar 

  • Dean W (1996) With broadax and firebrand: the destruction of the Brazilian Atlantic Forest. University of California Press, California

    Google Scholar 

  • Diamond JM, Bishop KD, Balen SV (1987) Bird survival in an isolated Javan woodland: island or mirror? Conserv Biol 1:132–142

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2015) Just a hypothesis: a reply to Hanski. J Biogeogr 42:993–994

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Ann Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Ferreira J, Pardini R, Metzger JP, Fonseca CR, Pompeu PS, Sparovek G, Louzada J (2012) Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. J Appl Ecol 49:535–541

    Google Scholar 

  • Fonseca CR, Joner F (2007) Two-sided edge effect studies and the restoration of endangered ecosystems. Restor Ecol 15:613–619

    Article  Google Scholar 

  • Fonseca CR, Antongiovanni M, Matsumoto M, Bernard E, Venticinque EM (2017) Conservation opportunities in the Caatinga. In: Silva JMC, Leal IR, Tabarelli M (eds) Caatinga: the largest dry forest in South America. Springer, Cham, pp 429–443

    Chapter  Google Scholar 

  • Fryxell JM, Wilmshurst JF, Sinclair AR, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol Lett 8:328–335

    Article  Google Scholar 

  • Gandiwa P, Matsvayi M, Ngwenya MM, Gandiwa E (2011) Assessment of livestock and human settlement encroachment into northern Gonarezhou National Park, Zimbabwe. J Sustain Dev Afr 13:19–33

    Article  Google Scholar 

  • Gandiwa E, Heitkönig IMA, Gandiwa P, Matsvayi W, Westhuizen HVD, Ngwenya MM (2013) Large herbivore dynamics in northern Gonarezhou National Park, Zimbabwe. NuSpace Inst Repos 54:345–354

    Google Scholar 

  • Gariglio MA, Riegelhaupt E, Pareyn F, Barcellos NDE (2008) Manejo sustentável dos recursos florestais da Caatinga/MMA. Secretaria de Biodiversidade e Florestas. Departamento de Florestas. Programa Nacional de Florestas. Unidade de Apoio do PNF no Nordeste. Natal, Brazil

  • Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY (2010) Uso sustentável e conservacão dos recursos florestais da Caatinga. Serviço Florestal Brasileiro, Brasília

    Google Scholar 

  • Graae BJ, Vandvik V, Armbruster WS, Eiserhardt WL, Svenning JC, Hylander K, Ehrlén J, Speed JDM, Klanderud K, Bråthen KA, Milbau A, Opedal ØH, Alsos IJ, Ejrnæs R, Bruun HH, Birks HJB, Westergaard KB, Birks HH, Lenoir J (2018) Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect Plant Ecol Evol Syst 30:41–50

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • Harrisson KA, Pavlova A, Amos N, Radford J, Sunnucks P (2014) Does reduced mobility through fragmentedlandscapes explain patch extinction patterns for three honeyeaters? J Anim Ecol 83:616–627

    Article  PubMed  Google Scholar 

  • Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Hobbs RJ (2001) Synergisms among habitat fragmentation, livestock grazing, and biotic invasions in southwestern Australia. Conserv Biol 15:1522–1528

    Article  Google Scholar 

  • Hobbs NT, Reid RS, Galvin KA, Ellis JE (2008) Fragmentation of arid and semi-arid ecosystems: implications for people and animals. In: Galvin KA, Reid RS, Behnke RH Jr, Hobbs NT (eds) Fragmentation in semi-arid and arid landscapes. Springer, Netherlands

    Google Scholar 

  • IBGE (2010) http://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bcim/versao2010/bcim_v3.04_dados/geodatabase/

  • Jenkins CN, Joppa L (2009) Expansion of the global terrestrial protected area system. Biol Conserv 142:2166–2174

    Article  Google Scholar 

  • Kleiman DG (1989) Reintroduction of captive mammals for conservation. Bioscience 39:152–161

    Article  Google Scholar 

  • Laurance WF (1990) Comparative responses of five arboreal marsupials to tropical forest fragmentation. J Mammal 71:641–653

    Article  Google Scholar 

  • Laurance WF, Nascimento HE, Laurance SG, Andrade A, Ewers RM, Harms KE, Luizão RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2:e1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669

    Article  PubMed  Google Scholar 

  • Laurance WF, Camargo JL, Luizão RC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Williamson GB, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didhamm RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144(1):56–67

    Article  Google Scholar 

  • Lindgren JP, Cousins SAO (2017) Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landscape Ecol 32:1895–1906

    Article  Google Scholar 

  • Lustig A, Stouffer DB, Doscher C, Worner SP (2017) Landscape metrics as a framework to measure the effect of landscape structure on the spread of invasive insect species. Landscape Ecol 32:2311

    Article  Google Scholar 

  • Mares MA, Willig MR, Lacher TE Jr (1985) The Brazilian Caatinga in South American zoogeography: tropical mammals in a dry region. J Biogeogr 12:57–69

    Article  Google Scholar 

  • Marinho FP, Mazzochini GG, Manhães AP, Weisser WW, Ganade G (2016) Effects of past and present land use on vegetation cover and regeneration in a tropical dryland forest. J Arid Environ 132:26–33

    Article  Google Scholar 

  • Martinelli G, Moraes MA (2013) Livro Vermelho da Flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. dspace.jbrj.gov.br/jspui/bitstream/doc/26/1/LivroVermelho.pdf

  • Medeiros SS, Cavalcante AMB, Marin AMP, Tinôco LBM, Salcedo IH, Pinto TF (2012) Sinopse do censo demográfico para o semiárido brasileiro. INSA Campina Grande

  • MMA (2011) Monitoramento do Desmatamento nos Biomas Brasileiros por Satélite—Acordo de Cooperação Técnica MMA/IBAMA. Monitoramento do bioma Caatinga 2008–2009. Brasília, DF. http://www.mma.gov.br/estruturas/sbf_chm_rbbio/_arquivos/relatorio_tecnico_caatinga_2008_2009_72.pdf

  • MMA (2014) Programa Áreas Protegidas da Amazônia (ARPA). Conheça o maior programa de conservação e uso sustentável de florestas tropicais do planeta. Brasília, DF. http://programaarpa.gov.br/wp-content/uploads/2015/02/MMA_ARPA_PORT_final.pdf

  • MMA (2016) Áreas prioritárias para conservação, uso sustentável e repartição dos benefícios da biodiversidade brasileira—Caatinga (Portaria MMA N° 223, de 21 de Junho de 2016). http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?jornal=1&pagina=81&data=22/06/2016

  • Muposhi VK, Chademana TC, Gandiwa E, Muboko N (2016) Edge effects: impact of anthropogenic activities on vegetation structure and diversity in western Umfurudzi Park, Zimbabwe. Afr J Ecol 54:450–459

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62

    Article  PubMed  CAS  Google Scholar 

  • Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landscape Ecol 19:435–455

    Article  Google Scholar 

  • Niemandt C, Greve M (2016) Fragmentation metric proxies provide insights into historical biodiversity loss in critically endangered grassland. Agric Ecosyst Environ 235:172–181

    Article  Google Scholar 

  • Pardini R, de Arruda Bueno A, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ, Butchart SH, Arroyo-Rodríguez V, Barlow J, Cerezo A, Cisneros L, D’Cruze N, Faria D, Hadley A, Harris SM, Klingbeil BT, Kormann U, Lens L, Medina-Rangel GF, Morante-Filho JC, Olivier P, Peters SL, Pidgeon A, Ribeiro DB, Scherber C, Schneider-Maunoury L, Struebig M, Urbina-Cardona N, Watling JI, Willig MR, Wood EM, Ewers RM (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    PubMed  PubMed Central  CAS  Google Scholar 

  • PRODES (2018) Monitoramento da floresta amazônica brasileira por satélite http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ribeiro E, Arroyo-Rodríguez V, Santos BA, Tabarelli M, Leal IR (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J Appl Ecol 52:611–620

    Article  Google Scholar 

  • Santos AM, Tabarelli M (2002) Distance from roads and cities as a predictor of habitat loss and fragmentation in the Caatinga vegetation of Brazil. Braz J Biol 62:897–905

    Article  PubMed  CAS  Google Scholar 

  • Schooley RL, Wiens JA (2004) Movements of cactus bugs: patch transfers, matrix resistance, and edge permeability. Landscape Ecol 19:801–810

    Article  Google Scholar 

  • Seddon AW, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531:229–232

    Article  PubMed  CAS  Google Scholar 

  • Silva AC, Souza AF (2018) Aridity drives plant biogeographical sub regions in the Caatinga, the largest tropical dry forest and woodland block in South America. PLoS ONE 13(4):e0196130

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva JMC, Souza MA, Bieber AGD, Carlos CJ (2003) Aves da Caatinga: status, uso do habitat e sensitividade. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e conservação da Caatinga. Editora Universitária, Universidade Federal de Pernambuco, Recife, pp 237–273

    Google Scholar 

  • Silva JMC, Leal I, Tabarelli M (2018) Caatinga: the largest tropical dry forest region in South America. Springer, New York. http://www.springer.com/br/book/9783319683386

  • Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends Ecol Evol 24:271–279

    Article  PubMed  Google Scholar 

  • Syrbe RU, Walz U (2012) Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecol Indic 21:80–88

    Article  Google Scholar 

  • Urban DL (2005) Modeling ecological processes across scales. Ecology 86:1996–2006

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Vasconcellos A, Bandeira AG, Moura FMS, Araújo VFP, Gusmão MAB, Constantino R (2010) Termite assemblages in three habitats under different disturbance regimes in the semi-arid Caatinga of NE Brazil. J Arid Environ 74:298–302

    Article  Google Scholar 

  • Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280:2126–2128

    Article  PubMed  CAS  Google Scholar 

  • Zanin M, Palomares F, Brito D (2015) The jaguar’s patches: viability of jaguar populations in fragmented landscapes. J Nat Conserv 23:90–97

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Gislene Ganade and Miriam Plaza Pinto for suggestions in previous versions of the manuscript and Megan F. King for the assistance with the English translation. MA received a PhD studentship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) and EMV and CRF were supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grants (305304/2013-5 and 309458/2013-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Antongiovanni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antongiovanni, M., Venticinque, E.M. & Fonseca, C.R. Fragmentation patterns of the Caatinga drylands. Landscape Ecol 33, 1353–1367 (2018). https://doi.org/10.1007/s10980-018-0672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0672-6

Keywords

Navigation