Skip to main content
Log in

Predicting species-habitat relationships: does body size matter?

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Allometric scaling laws are foundational to structuring processes from cellular to ecosystem levels. The idea that allometric relationships underlie species characteristic selection scales, the spatial scales at which species respond to landscape features, has recently been investigated, however, supporting empirical evidence is scarce.

Objectives

Lack of pattern can be explained by inaccurate estimation, low power, confounding factors, or absence of a relationship. In this paper, we evaluate the relationship between body size and species characteristic selection scales after overcoming limitations of previous study designs.

Methods

We conducted 1328 avian point counts across the state of Nebraska using the robust sampling design to account for imperfect detection. We used Bayesian latent indicator scale selection with N-mixture models to estimate species’ characteristic selection scales of six habitat features for 86 species. We propagated the uncertainty associated with assigning characteristic scales to a model of the relationship between body size and characteristic spatial scales.

Results

Species characteristic scales varied across habitat predictors, and varied in the uncertainty associated with selecting single characteristic scales. After propagating uncertainty our results do not support a relationship between species’ body size and the spatial scales at which they respond to landscape features.

Conclusions

As species abundance integrates birth, death, immigration, and emigration processes, each of which are influenced by ecological processes manifesting at various scales, we question whether a general allometric relationship should be expected. Our results suggest that selection may act on responses to specific environmental features, rather than responses to spatial scale per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297(5586):1545–1548

    Article  PubMed  CAS  Google Scholar 

  • Bakker KK, Naugle DE, Higgins KF (2002) Incorporating landscape attributes into models for migratory grassland bird conservation. Conserv Biol 16(6):1638–1646

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823

  • Bergman K-O, Jansson N, Claesson K, Palmer MW, Milberg P (2012) How much and at what scale? Multiscale analyses as decision support for conservation of saproxylic oak beetles. For Ecol Manag 265:133–141

    Article  Google Scholar 

  • Bird Species Distribution Maps of the World (2016) BirdLife International and Handbook of the Birds of the World. http://datazone.birdlife.org/species/requestdis

  • Bishop A, Barenberg A, Volpe N, Grosse R (2011) Nebraska land cover development. Rainwater Basin Joint Venture Report, Grand Island, NE

  • Blackburn TM, Lawton JH, Pimm SL (1993) Nonmetabolic explanations for the relationship between body-size and animal abundance. J Anim Ecol 62(4):694–702

    Article  Google Scholar 

  • Blondel J, Ferry C, Frochot B (1981) Point counts with unlimited distance. Stud Avian Biol 6:414–420

    Google Scholar 

  • Bollinger EK, Gavin TA, Smith K (2004) Responses of nesting bobolinks (Dolichonyx oryzivorus) to habitat edges. Auk 121(3):767–776

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling estimating abundance of biological populations. Oxford University Press, Oxford.

    Google Scholar 

  • Buler JJ, Moore FR, Woltmann S (2007) A multi-scale examination of stopover habitat use by birds. Ecology 88(7):1789–1802

    Article  PubMed  Google Scholar 

  • Calder WA (1984) Size, function, and life history. Harvard University Press, Cambridge

    Google Scholar 

  • Crist TO, Wiens JA (1994) Scale effects of vegetation on forager movement and seed harvesting by ants. Oikos 69(1):37–46

    Article  Google Scholar 

  • Cunningham MA, Johnson DH (2006) Proximate and landscape factors influence grassland bird distributions. Ecol Appl 16(3):1062–1075

    Article  PubMed  Google Scholar 

  • Damuth J (1981) Population-density and body size in mammals. Nature 290(5808):699–700

    Article  Google Scholar 

  • Desrochers A, Renaud C, Hochachka WM, Cadman M (2010) Area-sensitivity by forest songbirds: theoretical and practical implications of scale-dependency. Ecography 33(5):921–931

    Article  Google Scholar 

  • Diefenbach DR, Brauning DW, Mattice JA (2003) Variability in grassland bird counts related to observer differences and species detection rates. Auk 120(4):1168–1179

    Article  Google Scholar 

  • Doak DF, Marino PC, Kareiva PM (1992) Spatial scale mediates the influence of habitat fragmentation on dispersal success—implications for conservation. Theor Popul Biol 41(3):315–336

    Article  Google Scholar 

  • Dunning JB (1984) Body weights of 686 species of North American birds. West. Bird Banding Association Monogr. # 1, Cave Creek

    Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100(1):65–74

    Article  Google Scholar 

  • Fisher JT, Anholt B, Volpe JP (2011) Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecol Evol 1(4):517–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher RJ, Koford RR, Thompson F III (2003) Spatial responses of bobolinks (Dolichonyx oryzivorus) near different types of edges in northern Iowa. Auk 120(3):799–810

    Article  Google Scholar 

  • Garcia D, Chacoff NP (2007) Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conserv Biol 21(2):400–411

    Article  PubMed  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel-/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gelman A, Hill J, Su Y-S (2015) arm: data analysis using regression and multi-level/hierarchical models. R Package Version 1(4–8):622

    Google Scholar 

  • Hendriks AJ, Willers BJC, Lenders HJR, Leuven RSEW (2009) Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. Ecography 32(6):929–942

    Article  Google Scholar 

  • Henebry GM (1995) Spatial model error analysis using autocorrelation indices. Ecol Model 82(1):75–91

    Article  Google Scholar 

  • Hinsley SA, Bellamy PE, Newton I, Sparks TH (1995) Habitat and landscape factors influencing the presence of individual breeding bird species in woodland fragments. J Avian Biol 26(2):94–104

    Article  Google Scholar 

  • Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54(3):227–233

    Article  Google Scholar 

  • Holland JD, Fahrig L, Cappuccino N (2005) Body size affects the spatial scale of habitat-beetle interactions. Oikos 110(1):101–108

    Article  Google Scholar 

  • Holland JD, Yang S (2016) Multi-scale studies and the ecological neighborhood. Curr Landscape Ecol Rep 1(4):135–145

    Article  Google Scholar 

  • Holling CS (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62(4):447–502

    Article  Google Scholar 

  • Hostetler M, Holling C (2000) Detecting the scales at which birds respond to structure in urban landscapes. Urban Ecosyst 4(1):25–54

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landscape Ecol 27(7):929–941

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24(1):52–63

    Article  Google Scholar 

  • Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, Hillegass M, Lyon BN, Metzger GA, Olandese ML, Pepe D (2007) Does size matter for dispersal distance? Glob Ecol Biogeogr 16(4):415–425

    Article  Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61(1):65–71

    Article  Google Scholar 

  • Jorgensen CF, Powell LA, Lusk JJ, Bishop AA, Fontaine JJ (2014) Assessing landscape constraints on species abundance: does the neighborhood limit species response to local habitat conservation programs? PLoS ONE 9(6):e99339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keitt TH, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25(5):616–625

    Article  Google Scholar 

  • Kelsey KW, Naugle DE, Higgins KF, Bakker KK (2006) Planting trees in prairie landscapes: do the ecological costs outweigh the benefits? Nat Areas J 26(3):254–260

    Article  Google Scholar 

  • Kendall WL, Peterjohn BG, Sauer JR (1996) First-time observer effects in the North American Breeding Bird Survey. Auk 113(4):823–829

    Article  Google Scholar 

  • Kolasa J, Allen CR, Sendzimir J, Stow CA (2012) Predictions and retrodictions of the hierarchical representation of habitat in heterogeneous environments. Ecol Model 245:199–207

    Article  Google Scholar 

  • LaBarbera M (1989) Analyzing body size as a factor in ecology and evolution. Annu Rev Ecol Syst 20:97–117

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Marquet PA, Navarrete SA, Castilla JC (1995) Body-size, population-density, and the energetic equivalence rule. J Anim Ecol 64(3):325–332

    Article  Google Scholar 

  • Martin AE, Fahrig L (2012) Measuring and selecting scales of effect for landscape predictors in species–habitat models. Ecol Appl 22(8):2277–2292

    Article  PubMed  Google Scholar 

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landscape Ecol 31(6):1161–1175

    Article  Google Scholar 

  • Mech SG, Zollner PA (2002) Using body size to predict perceptual range. Oikos 98(1):47–52

    Article  Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landscape Ecol 31(6):1177–1194

    Article  Google Scholar 

  • Mowat G (2006) Winter habitat associations of American martens Martes americana in interior wet-belt forests. Wildl Biol 12(1):51–61

    Article  Google Scholar 

  • Nams VO, Mowat G, Panian MA (2006) Determining the spatial scale for conservation purposes—an example with grizzly bears. Biol Conserv 128(1):109–119

    Article  Google Scholar 

  • Naugle DE, Higgins KF, Estey ME, Johnson RR, Nusser SM (2000) Local and landscape-level factors influencing black tern habitat suitability. J Wildl Manag 64(1):253–260

    Article  Google Scholar 

  • Patterson MP, Best LB (1996) Bird abundance and nesting success in Iowa CRP fields: the importance of vegetation structure and composition. Am Midl Nat 135(1):153–167

    Article  Google Scholar 

  • Perry G, Garland T (2002) Lizard home ranges revisited: effects of sex, body size, diet, habitat, and phylogeny. Ecology 83(7):1870–1885

    Article  Google Scholar 

  • Peters RH (1986) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing. Vienna, p 125

  • Plummer M, Stukalov A, Denwood M, Plummer MM (2015) Package ‘rjags’. update 16:1

    Google Scholar 

  • Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manag 46(3):752–757

    Article  Google Scholar 

  • Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci USA 98(8):4534–4539

    Article  PubMed  CAS  Google Scholar 

  • Ralph CJ, Sauer SR (1995) Monitoring bird populations by point counts. Pacific Southwest Forest and Range Experiment Station, Berkeley

    Book  Google Scholar 

  • Razgour O, Hanmer J, Jones G (2011) Using multi-scale modelling to predict habitat suitability for species of conservation concern: The grey long-eared bat as a case study. Biol Conserv 144(12):2922–2930

    Article  Google Scholar 

  • Renfrew RB, Ribic CA (2008) Multi-scale models of grassland passerine abundance in a fragmented system in Wisconsin. Landscape Ecol 23(2):181–193

    Article  Google Scholar 

  • Ribic CA, Koford RR, Herkert JR, Johnson DH, Niemuth ND, Naugle DE, Bakker KK, Sample DW, Renfrew RB (2009) Area sensitivity in North American grassland birds: patterns and processes. Auk 126(2):233–244

    Article  Google Scholar 

  • Robinson WS (1950) Ecological correlations and the behavior of individuals. Am Sociol Rev 15(3):351–357

    Article  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386(6626):710–713

    Article  CAS  Google Scholar 

  • Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60(1):108–115

    Article  PubMed  Google Scholar 

  • Royle JA, Kery M, Gautier R, Schmid H (2007) Hierarchical spatial models of abundance and occurrence from imperfect survey data. Ecol Monogr 77(3):465–481

    Article  Google Scholar 

  • Royle JA, Nichols JD, Kery M (2005) Modelling occurrence and abundance of species when detection is imperfect. Oikos 110(2):353–359

    Article  Google Scholar 

  • Saab V (1999) Importance of spatial scale to habitat use by breeding birds in riparian forests: a hierarchical analysis. Ecol Appl 9(1):135–151

    Article  Google Scholar 

  • Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163(3):429–441

    Article  PubMed  Google Scholar 

  • Seavy NE, Viers JH, Wood JK (2009) Riparian bird response to vegetation structure: a multiscale analysis using LiDAR measurements of canopy height. Ecol Appl 19(7):1848–1857

    Article  PubMed  Google Scholar 

  • Sinnott RW (1984) Virtues of the haversine. Sky Telesc 68(2):159

    Google Scholar 

  • Stuber EF, Gruber LF, Fontaine JJ (2017) A Bayesian method for assessing multi-scale species-habitat relationships. Landscape Ecol 32(12):2365–2381

    Article  Google Scholar 

  • Thompson SJ, Arnold TW, Amundson CL (2014) A multiscale assessment of tree avoidance by prairie birds. The Condor 116(3):303–315

    Article  Google Scholar 

  • Thornton DH, Fletcher RJ (2014) Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography 37(5):454–463

    Google Scholar 

  • Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP (2003) Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol Appl 13(6):1790–1801

    Article  Google Scholar 

  • Van Buskirk J, Willi Y (2004) Enhancement of farmland biodiversity within set-aside land. Conserv Biol 18(4):987–994

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276(5309):122–126

    Article  PubMed  CAS  Google Scholar 

  • Wheatley M, Johnson C (2009) Factors limiting our understanding of ecological scale. Ecol Complex 6(2):150–159

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28(4):453–470

    Article  Google Scholar 

  • Wiens JA (1976) Population responses to patchy environments. Annu Rev Ecol Syst 7:81–120

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397

    Article  Google Scholar 

  • Winter M, Johnson DH, Shaffer JA, Donovan TM, Svedarsky WD (2006) Patch size and landscape effects on density and nesting success of grassland birds. J Wildl Manag 70(1):158–172

    Article  Google Scholar 

  • With KA, Crist TO (1996) Translating across scales: Simulating species distributions as the aggregate response of individuals to heterogeneity. Ecol Model 93(1–3):125–137

    Article  Google Scholar 

  • Wu J (2006) Scaling and uncertainty analysis in ecology : methods and applications. Springer, Dordrecht

    Book  Google Scholar 

  • Wu JG (2007) Scale and scaling: a cross-disciplinary perspective. In: Wu J, Hobbs R (eds) Key topics in landscape ecology. Cambridge University Press, Cambridge, pp 115–142

    Chapter  Google Scholar 

  • Wu JG, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70(4):439–466

    Article  Google Scholar 

  • Zollner PA (2000) Comparing the landscape level perceptual abilities of forest sciurids in fragmented agricultural landscapes. Landscape Ecol 15(6):523–533

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was received from Federal Aid in Wildlife Restoration project W-98-R, administered by the Nebraska Game and Parks Commission. We thank D. Uden and two anonymous reviewers for critical comments that improved the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The Nebraska Cooperative Fish and Wildlife Research Unit is supported by a cooperative agreement among the U.S. Geological Survey, the Nebraska Game and Parks Commission, the University of Nebraska, the U.S. Fish and Wildlife Service, and the Wildlife Management Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica F. Stuber.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuber, E.F., F. Gruber, L. & Fontaine, J.J. Predicting species-habitat relationships: does body size matter?. Landscape Ecol 33, 1049–1060 (2018). https://doi.org/10.1007/s10980-018-0648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0648-6

Keywords

Navigation