Landscape Ecology

, Volume 33, Issue 4, pp 659–673 | Cite as

Planning for the future: identifying conservation priority areas for Iberian birds under climate change

  • María Triviño
  • Heini Kujala
  • Miguel B. Araújo
  • Mar Cabeza
Research Article



Species are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.


We identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.


We use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.


19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.


We identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.


Bioclimatic envelope models Breeding birds Conservation planning Land-use change Natura 2000 Portugal Protected areas Reserve networks Spain Zonation software 



M.T. thanks Wilfried Thuiller, the participants of the Ibiochange Lab Retreat, the jury of her PhD defense and people from the Journal Club in Jyväskylä for insightful comments and suggestions. M.T. also thanks the Metapopulation Research Centre at the University of Helsinki for providing the supportive environment in which much of this work was developed. We thank two anonymous reviewers and the associated editor for their helpful comments. M.T. is supported by a FPI-MICINN fellowship and KONE foundation; H.K. by the LUOVA Doctoral Programme and the Australian National Environmental Research Program (NERP); M.C. by the Academy of Finland (Grant #257686).

Supplementary material

10980_2018_626_MOESM1_ESM.docx (1 mb)
Electronic supplementary material 1 (DOCX 1031 kb)


  1. Alagador D, Cerdeira JO, Araújo MB (2014) Shifting protected areas: scheduling spatial priorities under climate change. J Appl Ecol 51:703–713CrossRefGoogle Scholar
  2. Alagador D, Cerdeira JO, Araújo MB (2016) Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol Evol 7:853–866CrossRefGoogle Scholar
  3. Álvarez-Martínez JM, Suárez-Seoane S, De Luis Calabuig E (2011) Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes: the role of uncertainty. Landsc Urban Plan 101:108–119CrossRefGoogle Scholar
  4. Araújo MB (2009) Climate change and spatial conservation planning. In: Moilanen A, Possingham H, Wilson K (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 172–184Google Scholar
  5. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492CrossRefPubMedPubMedCentralGoogle Scholar
  6. Araújo MB, Cabeza M, Thuiller W, Hannah L,  Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626CrossRefGoogle Scholar
  7. Araújo MB, Guilhaumon F, Neto DR, Pozo I, Calmaestra R (2012) Biodiversidade e Alterações Climáticas/Biodiversidad y Alteraciones Climáticas. Ministério do Ambiente e Ordenamento do Território & Ministerio de Medio Ambiente y Medio Rural y Marino, LisboaGoogle Scholar
  8. Araújo MB, Lobo JM, Moreno JC (2007) The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conserv Biol 21:1423–1432CrossRefPubMedGoogle Scholar
  9. Araújo MB, Nogués-Bravo D, Reginster I, Rounsevell M,  Whittaker RJ (2008) Exposure of European biodiversity to changes in human-induced pressures. Environ Sci Policy 11:38–45CrossRefGoogle Scholar
  10. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538CrossRefGoogle Scholar
  11. Assunção-Albuquerque MJT, Rey Benayas JM, Albuquerque FS, Rodríguez MÁ (2012) The geography of high-value biodiversity areas for terrestrial vertebrates in Western Europe and their coverage by protected area networks. Web Ecol 12:65–73CrossRefGoogle Scholar
  12. Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309CrossRefGoogle Scholar
  13. Baselga A, Araújo MB (2010) Do community-level models describe community variation effectively? J Biogeogr 37:1842–1850Google Scholar
  14. Beier P, Hunter ML, Anderson M (2015) Introduction to special section: conserving nature’s stage. Conserv Biol 29:613–617CrossRefPubMedGoogle Scholar
  15. Brommer JE, Møller AP (2010) Range margins, climate change, and ecology. In: Møller AP, Fieldler W, Berthlod P (eds) Effects of climate change on birds. Oxford University Press, OxfordGoogle Scholar
  16. Carrascal LM, Lobo JM (2003) Respuestas a viejas preguntas con nuevos datos: estudio de los patrones de distribución de la avifauna española y consecuencias para su conservación. In: Martí R, Del Moral JC (eds) Ministerio de Medio Ambiente—SEO/BirdLife M (ed) Atlas de las aves reproductoras de España, pp 651–668, 718–721Google Scholar
  17. Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Change Biol 16:891–904CrossRefGoogle Scholar
  18. Civantos E, Thuiller W, Maiorano L, Guisan A, Araújo MB (2012) Potential impacts of climate change on ecosystem services in Europe: the case of pest control by vertebrates. Bioscience 62:658–666CrossRefGoogle Scholar
  19. Convention Biological Diversity (2010) Aichi biodiversity targets of the strategic plan 2011–2020.
  20. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679CrossRefPubMedGoogle Scholar
  21. Dendoncker N, Rounsevell M, Bogaert P (2007) Spatial analysis and modelling of land use distributions in Belgium. Comput Environ Urban Syst 31:188–205CrossRefGoogle Scholar
  22. Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliola J, Herrando S, Julliard R, Kuussaari M, Lindström A, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change 2:121–124CrossRefGoogle Scholar
  23. Eklund J, Arponen A, Visconti P, Cabeza M (2011) Governance factors in the identification of global conservation priorities for mammals. Philos Trans R Soc B 366:2661–2669CrossRefGoogle Scholar
  24. Equipa Atlas (2008) Atlas das aves nidificantes em Portugal (1999-2005). Assírio & Alvim, LisboaGoogle Scholar
  25. Europarc-España (2014) EUROPARC-España Anuario 2013 del estado de las áreas protegidas en EspañaGoogle Scholar
  26. European Environmental Agency (2000) CORINE land cover. European Environmental Agency, LuxembourgGoogle Scholar
  27. Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, Kuemmerle T, Smith HG, von Wehrden H (2014) Land sparing versus land sharing: moving forward. Conserv Lett 7:149–157CrossRefGoogle Scholar
  28. Fordham DA, Akçakaya HR, Brook BW, Rodríguez A, Alves PC, Civantos E, Triviño M, Watts MJ, Araújo MB (2013) Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat Clim Change 3:899–903  CrossRefGoogle Scholar
  29. Forero-Medina G, Terborgh J, Socolar SJ, Pimm SL (2011) Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLoS ONE 6:e28535CrossRefPubMedPubMedCentralGoogle Scholar
  30. Garcia RA, Cabeza M, Altwegg R, Araújo MB (2016) Do projections from bioclimatic envelope models and climate change metrics match? Glob Ecol Biogeogr 25:65–74CrossRefGoogle Scholar
  31. Garden JG, O’Donnell T, Catterall CP (2015) Changing habitat areas and static reserves: challenges to species protection under climate change. Landscape Ecol 30:1959–1973CrossRefGoogle Scholar
  32. Gil-Tena A, Brotons L, Saura S (2009) Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob Change Biol 15:474–485CrossRefGoogle Scholar
  33. Gil-Tena A, Saura S, Brotons L (2007) Effects of forest composition and structure on bird species richness in a Mediterranean context: implications for forest ecosystem management. For Ecol Manage 242:470–476CrossRefGoogle Scholar
  34. Hannah L, Midgley G, Andelman S, Araújo MB, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138  CrossRefGoogle Scholar
  35. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  36. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32CrossRefGoogle Scholar
  37. Hernández-Manrique OL, Numa C, Verdú JR, Galante E, Lobo JM (2012) Current protected sites do not allow the representation of endangered invertebrates: the Spanish case. Insect Conserv Divers 5:414–421  CrossRefGoogle Scholar
  38. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  39. Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B (2009) Projected impacts of climate change on a continent-wide protected area network. Ecol Lett 12:420–431CrossRefPubMedGoogle Scholar
  40. Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Willis SG (2015) The drivers of avian abundance: patterns in the relative importance of climate and land use. Glob Ecol Biogeogr 24:1249–1260CrossRefGoogle Scholar
  41. Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE 3:e1439CrossRefPubMedPubMedCentralGoogle Scholar
  42. ICNF (2013) Instituto da Conservação da Natureza e das Florestas. Accesed 10 Aug 2015
  43. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  44. Jarzyna MA, Zuckerberg B, Finley AO, Porter WF (2016) Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landscape Ecol 31:2275–2290CrossRefGoogle Scholar
  45. Jenkins CN, Joppa L (2010) Considering protected area category in conservation analyses. Biol Conserv 143:7–8CrossRefGoogle Scholar
  46. Kujala H, Moilanen A, Araújo MB, Cabeza M (2013) Conservation planning with uncertain climate change projections. PLoS ONE 8:e53315CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lung T, Meller L, van Teeffelen AJA, Thuiller W, Cabeza M (2014) Biodiversity funds and conservation needs in the EU under climate change. Conserv Lett 7:390–400CrossRefPubMedPubMedCentralGoogle Scholar
  48. Madroño A, González C, Atienza JC (2004) Libro rojo de las aves de España. Dirección General para la Biodiversidad-SEO/Birdlife, MadridGoogle Scholar
  49. Martí R, del Moral JC (2003) Atlas de las aves reproductoras de España. Dirección General de Conservación de la Naturaleza & Sociedad Española de Ornitología, MadridGoogle Scholar
  50. Martínez I, Carreño F, Escudero A, Rubio A (2006) Are threatened lichen species well-protected in Spain? Effectiveness of a protected areas network. Biol Conserv 133:500–511CrossRefGoogle Scholar
  51. Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089CrossRefPubMedGoogle Scholar
  52. Moilanen A, Kujala H (2008) Zonation spatial conservation planning framework and software v. 2.0Google Scholar
  53. Moilanen A, Meller L, Leppänen J, Pouzols FM, Arponen A, Kujala H (2012) Zonation—spatial conservation planning framework and software. Version 3.1. User manual, Helsinki, Finland.
  54. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  55. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  56. Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Change Biol 9:647–655CrossRefGoogle Scholar
  57. Phillips SJ, Williams P, Midgley G, Archer A (2008) Optimizing dispersal corridors for the Cape Proteaceae using network flow. Ecol Appl 18:1200–1211CrossRefPubMedGoogle Scholar
  58. Regos A, D’Amen M, Titeux N, Herrando S, Guisan A, Brotons L (2016) Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers Distrib 22:83–96CrossRefGoogle Scholar
  59. Rey Benayas JM, Martins A, Nicolau JM, Schulz JJ (2007) Abandonment of agricultural land: an overview of drivers and consequences. CAB Reviews 2:1–14CrossRefGoogle Scholar
  60. Roth T, Plattner M, Amrhein V (2014) Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 9:e82490CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpaa S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68CrossRefGoogle Scholar
  62. Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13CrossRefGoogle Scholar
  63. Tellería JL, Fernández-López J, Fandos G (2016) Effect of climate change on Mediterranean winter ranges of two migratory passerines. PLoS ONE 11:e0146958CrossRefPubMedPubMedCentralGoogle Scholar
  64. Thomas CD, Gillingham PK (2015) The performance of protected areas for biodiversity under climate change. Biol J Linn Soc 115:718–730CrossRefGoogle Scholar
  65. Thomas CD, Gillingham PK, Bradbury RB, Roy DB, Anderson BJ, Baxter JM, Bourn NAD, Crick HQP, Findon RA, Fox R, Hodgson JA, Holt AR, Morecroft MD, O'Hanlon NJ, Oliver TH, Pearce-Higgins JW, Procter DA, Thomas JA, Walker KJ, Walmsley CA, Wilson RJ, Hill JK (2012) Protected areas facilitate species’ range expansions. Proc Natl Acad Sci 109:14063–14068CrossRefPubMedPubMedCentralGoogle Scholar
  66. Thuiller W, Guéguen M, Georges D, Bonet R, Chalmandrier L, Garraud L, Renaud J, Roquet C, Van Es J, Zimmermann NE, Lavergne S (2014a) Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography 37:1254–1266CrossRefPubMedPubMedCentralGoogle Scholar
  67. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  68. Thuiller W, Pironon S, Psomas A, Barbet-Massin M, Jiguet F, Lavergne S, Pearman PB, Renaud J, Zupan L, Zimmermann NE (2014b) The European functional tree of bird life in the face of global change. Nat Commun 5:3118CrossRefPubMedPubMedCentralGoogle Scholar
  69. Torres A, Palacín C, Seoane J, Alonso J (2011) Assessing the effects of a highway on a threatened species using Before–During–After and Before–During–After-Control–Impact designs. Biol Conserv 144:2223–2232CrossRefGoogle Scholar
  70. Triviño M, Cabeza M, Thuiller W, Hickler T, Araújo MB (2013) Risk assessment for Iberian birds under global change. Biol Conserv 168:192–200  CrossRefGoogle Scholar
  71. Triviño M, Thuiller W, Cabeza M, Hickler T, Araújo MB (2011) The contribution of vegetation and landscape configuration for predicting environmental change impacts on Iberian birds. PLoS ONE 6:e29373CrossRefPubMedPubMedCentralGoogle Scholar
  72. Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197CrossRefGoogle Scholar
  73. Vallecillo S, Brotons L, Herrando S (2008) Assessing the response of open-habitat bird species to landscape changes in Mediterranean mosaics. Biodivers Conserv 17:103–119CrossRefGoogle Scholar
  74. Verhulst J, Báldi A, Kleijn D (2004) Relationship between land-use intensity and species richness and abundance of birds in Hungary. Agric Ecosyst Environ 104:465–473CrossRefGoogle Scholar
  75. Williams P, Hannah L, Andelman S, Midgley G, Araújo MB, Hughes G, Manne L, Martinez-Meyer E, Pearson R (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape proteaceae. Conserv Biol 19:1063–1074CrossRefGoogle Scholar
  76. Williams PH, Humphries C, Araújo MB, Lampinen R, Hagemeijer W, Gasc J-P, Mitchell-Jones T (2000) Endemism and important areas for conserving European biodiversity: a preliminary exploration of atlas data for plants and terrestrial vertebrates. Belg J Entomol 2:21–46Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias NaturalesConsejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of Biological and Environmental Sciences, Metapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
  4. 4.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
  5. 5.Rui Nabeiro Biodiversity ChairUniversity of ÉvoraÉvoraPortugal

Personalised recommendations