Landscape Ecology

, Volume 33, Issue 4, pp 529–546 | Cite as

Reading past landscapes: combining modern and historical records, maps, pollen-based vegetation reconstructions, and the socioeconomic background

  • Anneli Poska
  • Vivika Väli
  • Pille Tomson
  • Jüri Vassiljev
  • Kersti Kihno
  • Tiiu Alliksaar
  • Miguel Villoslada
  • Leili Saarse
  • Kalev Sepp
Research Article



Anthropogenic and environmental changes are reshaping landscapes across the globe. In this context, understanding the patterns, drivers, and consequences of these changes is one of the central challenges of humankind.


We aim to test the possibilities of combining modern multidisciplinary approaches to reconstruct the land-cover and linking the changes in land-cover to socioeconomic shifts in southern Estonia over the last 200 years.


The historical records from five, and maps from six time periods and 79 pollen-based land-cover reconstructions from four lakes are used to determine the land-cover structure and composition and are thereafter combined with the literature based analyses of socioeconomic changes.


All information sources recorded similar changes in the land-cover. The anthropogenic deforestation was comparable to today’s (approximately 50%) during the nineteenth century. Major political and socioeconomic changes led to the intensification of agriculture and maximal deforestation (60–85%) at the beginning of the twentieth century. The land nationalisation following the Soviet occupation led to the reforestation of the less productive agricultural lands. This trend continued until the implementation of European Union agrarian subsidies at the beginning of the twenty first century.


Pollen-based reconstructions provide a trustworthy alternative to historical records and maps. Accounting for source specific biases is essential when dealing with any data source. The landscape’s response to socioeconomic changes was considerable in Estonia over the last 200 years. Changes in land ownership and the global agricultural market are major drivers in determining the strength and direction of the land-cover change.


Past cultural landscape Land-use change Historical data Pollen-based reconstructions Socioeconomic factors Estonia 



The research was supported by the institutional research funding grants IUT1-8 and IUT21- of the Estonian Ministry of Education and Research, the European Union through the European Regional Development Fund (projects Loora and Ökomaa), ETF9031 and the herbarium TAA of Estonian University of Life Sciences. We are thankful to S. Veski, A. Heinsalu, M. Liiv and N. Stivrins for their help during the coring.

Supplementary material

10980_2018_615_MOESM1_ESM.pdf (245 kb)
Supplementary material 1 (PDF 245 kb)


  1. Bender O, Boehmenr HJ, Jens D, Schumacher KP (2005) Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landscape Ecol 20:149–163CrossRefGoogle Scholar
  2. Berglund BE (ed) (1991) The cultural landscape during 6000 years in southern Sweden—the Ystad project. Ecol Bull 41:1–495Google Scholar
  3. Berglund BE (2003) Human impact and climate changes—synchronous events and a causal link? Quat Int 105:7–12CrossRefGoogle Scholar
  4. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  5. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  6. Broström A, Nielsen AB, Gaillard M-J, Hjelle K, Mazier F, Binney H, Bunting J, Fyfe R, Meltsov V, Poska A, Räsänen S, Soepboer W, von Stedingk H, Suutari H, Sugita S (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Veg Hist Archaeobot 17:461–478CrossRefGoogle Scholar
  7. Burkhard B, Maes J (eds) (2017) Mapping ecosystem services. Pensoft Publishers, SofiaGoogle Scholar
  8. Calcote R (1995) Pollen source area and pollen productivity: evidence from forest hollows. J Ecol 83(4):591–602CrossRefGoogle Scholar
  9. Cousin SAO (2001) Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landscape Ecol 16:41–54CrossRefGoogle Scholar
  10. Erdtman G (1969) Handbook of palynology. Morphology–Taxonomy–Ecology. An introduction to the study of pollen grains and spores. Verlag Munksgaard, CopenhagenGoogle Scholar
  11. Faegri K, Iversen J (1989) Textbook of pollen analysis. 4th Edn. Faegri K, Kaland PE, Krywinski K (eds). Wiley, ChichesterGoogle Scholar
  12. Groot MHM, Bogot RG, Lourens LJ, Hooghiemstra H, Vriend M, Berrio JC, Tuenter E, Van der Plicht J, Van Geel B, Ziegler M, Weber SL, Betancourt A, Contreras L, Gaviria S, Giraldo C, González N, Jansen  JHF, Konert M, Ortega D, Rangel O, Sarmiento G, Vandenberghe J, Van der Hammen T, Van der Linden M, Westerhoff W (2011) Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Clim Past 7:299–316CrossRefGoogle Scholar
  13. Hamre LN, Domaas ST, Austad I, Rydgren K (2007) Land-cover and structural changes in a western Norwegian cultural landscape since 1865, based on an old cadastral map and a field survey. Landscape Ecol 22:1563–1574CrossRefGoogle Scholar
  14. Hjelle KL, Mehl IK, Sugita S, Andersen GL (2015) From pollen percentage to vegetation cover: evaluation of the Landscape Reconstruction Algorithm in western Norway. J Quat Sci 30(4):312–324CrossRefGoogle Scholar
  15. Jääts L, Kihno K, Tomson P, Konsa M (2010) Tracing fire cultivation in Estonia. For Stud 53:53–65Google Scholar
  16. Kahk J (1992) Uuenduste sissetung 18. sajandi lõpust 19. sajandi keskpaigani. In: Kahk J (ed) Eesti talurahva ajalugu 1. Tallinn, Olion, pp 365–377Google Scholar
  17. Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034CrossRefGoogle Scholar
  18. Kuemmerle T, Kaplan JO, Prishchepov AV, Rylsky I, Chaskovskyy O, Tikunov VS, Müller D (2015) Forest transitions in Eastern Europe and their effects on carbon budgets. Glob Change Biol 21:3049–3306CrossRefGoogle Scholar
  19. Laanisto L, Sammul M, Kull T, Macek P, Hutchings MJ (2015) Trait-based analysis of decline in plant species ranges during the twentieth century: a regional comparison between the UK and Estonia. Glob Change Biol 21:2726–2738CrossRefGoogle Scholar
  20. Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27:108–118CrossRefGoogle Scholar
  21. Liitoja-Tarkiainen Ü (2006) Talukõlvikud Vooremaal 17.–19. sajandil. In: Tamberg T (ed) Vene aeg Eestis. Uurimusi 16. sajandi keskpaigast kuni 20.sajandi alguseni. Eesti Ajalooarhiivi Toimetised 14(21), Tartu, pp 229−254Google Scholar
  22. Liiv M, Alliksaar T, Freiberg R, Heinsalu A, Ott I, Reitalu T, Tõnno I, Vassiljev J, Veski S (2017) Drastic changes in lake ecosystem development as a consequence of flax retting: a multiproxy palaeolimnological study of Lake Kooraste Linajärv, Estonia. Veget Hist Archaeobot. Google Scholar
  23. Lillak R (2003) Eesti Põllumajanduse Ajalugu. Eesti Põllumajandusülikooli kirjastus, TartuGoogle Scholar
  24. Lindbladh M, Fraver S, Edvardsson J, Felton A (2013) Past forest composition, structures and processes: how paleoecology can contribute to forest conservation. Biol Conserv 168:116–127CrossRefGoogle Scholar
  25. Maffi L (2005) Linguistic, cultural, and biological diversity. Annu Rev Anthropol 34:599–617CrossRefGoogle Scholar
  26. Mander Ü, Palang H (1994) Changes of landscape structure in Estonia during the Soviet period. GeoJournal 33(1):45–54CrossRefGoogle Scholar
  27. Mander Ü, Palang H (1999) Landscape changes in Estonia: reasons, processes, consequences. In: Krönert R, Baudry J, Bowler IR, Reenberg A (eds) Land-use changes and their environmental impact in rural areas in Europe. The Parthenon Publishing Group, Lancs, pp 165–187Google Scholar
  28. Marquer L, Gaillard M-J, Sugita S, Trondman A-K, Mazier F, Nielsen AB, Fyfe RM, Odgaard BV, Alenius T, Birks HJB, Bjune A, Christiansen J, Dodsonm J, Edwards KJ, Giesecke T, Herzschuh U, Kangur M, Lorenz S, Poska A, Schult M, Seppä H (2014) Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. Quat Sci Rev 90:199–216CrossRefGoogle Scholar
  29. Mazier F, Broström A, Bragee P, Fredh D, Stenberg L, Thiere G, Sugita S, Hammarlund D (2015) Two hundred years of land-use change in the South Sweden Uplands: comparison of historical map-based estimates with a pollen-based reconstruction using the landscape reconstruction algorithm. Veg Hist Archaeobot 24:555–570CrossRefGoogle Scholar
  30. Meikar T, Uri V (2000) Võsamaade majandamisest Eestis. Eesti metsad ja metsandus aastatuhande vahetusel. In: Meikar T, Etverk, I (Eds) Akadeemilise metsaseltsi toimetised XI. Tartu, pp 103–120Google Scholar
  31. Merila-Lattik H (2005) Karm ja kaunis Karula. Elust, olust ja inimestest muinasajast tänapäevani. Eesti Folkloori Instituut, TartuGoogle Scholar
  32. Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563CrossRefGoogle Scholar
  33. Nielsen AB, Odgaard BV (2010) Quantitative landscape dynamics in Denmark through the last three millennia based on the Landscape Reconstruction Algorithm approach. Veg Hist Archaeobot 19:375–387CrossRefGoogle Scholar
  34. Õispuu L (ed) (1996) Political arrests in Estonia 1940–1988, vol 1. Estonian Repressed Persons Records Bureau, TallinnGoogle Scholar
  35. Pae T, Tammiksaar E, Sooväli-Sepping H (2009) Historical geography of Estonian cattle breeds. Trames J Humanit Soc 13(4):357–373CrossRefGoogle Scholar
  36. Peters KJ, Kuipers A, Keane MG, Dimitriadou A (eds) (2009) The cattle sector in Central and Eastern Europe. Developments and opportunities in a time of transition. EAAP Technical Series, 10, Wageningen Academic Publisher, WageningenGoogle Scholar
  37. Poska A, Meltsov V, Sugita S, Vassiljev J (2011) Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in cultural landscape of the hemi-boreal forest zone (Estonia). Rev Palaeobot Palynol 167:30–39CrossRefGoogle Scholar
  38. Poska A, Saarse L, Koppel K, Nielsen AB, Avel E, Vassiljev J, Väli V (2014) The Verijärv area, South Estonia over the last millennium: a high resolution quantitative land cover reconstruction based on pollen and historical data. Rev Palaeobot Palynol 207:5–17CrossRefGoogle Scholar
  39. Rabbinge R, Van Diepen CA (2000) Changes in agriculture and land use in Europe. Eur J Agron 13:85–100CrossRefGoogle Scholar
  40. Raet J, Sepp K, Kaasik A (2008) Assessment of changes in forest coverage, based in historical maps. For Stud 48:67–78Google Scholar
  41. Raudsaar M, Pärt E, Adermann V (2014) Forest resources. Distribution of forest land area and growing stock by counties. In: Raudsaar M, Merenäkk M, Valgepea M (Eds) Yearbook 2013. Estonian Environment Agency, p. 4Google Scholar
  42. Sepp H (1940) Lõuna-Eesti põllumajanduse arengu suund 1880-ndais aastais: mit einem Referat: Die Richtung der Entwicklung der Feldwirtschaft in Süd-Estland in den 80-er Jahren des 19. Jahrhunderts. Tartu, pp 341–402Google Scholar
  43. Sirendi A, Kõiv M, Niilo L, Pumbo E, Saar E (2009) Muutused ja reformid siirdeperioodil turumajandusse. In: Eesti põllumajandus XX sajandil. III, Ülevaade põllumajandusest siirdeperioodil: aastad 1990–2008. Saku, pp 27–187Google Scholar
  44. Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897CrossRefGoogle Scholar
  45. Sugita S (2007a) Theory of quantitative reconstruction of vegetation. I. Pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241CrossRefGoogle Scholar
  46. Sugita S (2007b) Theory of quantitative reconstruction of vegetation. II. All you need is LOVE. Holocene 17:243–257CrossRefGoogle Scholar
  47. Sugita S, Parshall T, Calcote R, Walker K (2010) Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quat Res 74:289–300CrossRefGoogle Scholar
  48. Tomson P, Bunce RGH, Sepp K (2015) The role of slash and burn cultivation in the formation of southern Estonian landscapes and implications for nature conservation. Landscape Urban Plan 137:54–63CrossRefGoogle Scholar
  49. Tomson P, Bunce RGH, Sepp K (2016) Historical development of forest patterns in former slash and burn sites in Southern Estonia. In: Angoletti M, Emanueli F (eds) Biocultural diversity in Europe. (Environmental History 5), Springer, pp 303−318Google Scholar
  50. Trondman A-K, Gaillard M-J, Mazier F, Sugita S, Fyfe R, Nielsen AB, Twiddle C, Barratt P, Birks HJB, Bjune AE, Björkman L, Broström A, Caseldine C, David R, Dodson J, Dörfler W, Fischer E, van Geel E, Giesecke T, Hultberg T, Kalnina L, Kangur M, van der Knaap P, Koff T, Kuneš P, Lagerås P, Latałowa M, Lechterbeck J, Leroyer C, Leydet M, Lindbladh M, Marquer L, Mitchell FJG, Odgaard BV, Peglar SM, Persson SM, Poska A, Rösch M, Seppä H, Veski S, Wick L (2015) Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Glob Change Biol 21:676–697CrossRefGoogle Scholar
  51. Veski S, Koppel K, Poska A (2005) Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, southern Estonia. J Biogeogr 32:1473–1488CrossRefGoogle Scholar
  52. Walker KJ, Preston CD, Boon CR (2009) Fifty years of change in an area of intensive agriculture: plant trait responses to habitat modification and conservation, Bedfordshire, England. Biodivers Conserv 18:3597–3613CrossRefGoogle Scholar
  53. Zhao Y, Yu ZC, Chen FH, Liu XJ, Ito E (2008) Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China. Glob Planet Change 62:107–114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeologyTallinn University of TechnologyTallinnEstonia
  2. 2.Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
  3. 3.Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  4. 4.Department of GeologyTartu UniversityTartuEstonia

Personalised recommendations