Skip to main content
Log in

Covariation between local and landscape factors influences the structure of ground-active arthropod communities in fragmented metropolitan woodlands

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The world is becoming increasingly urbanized, with more than half of the global population now living in cities. Understanding the factors impacting natural communities in fragmented landscapes is therefore crucial for predicting how the remaining ecosystems will respond to global change. Ground-active arthropods, which are important in nutrient cycling, are likely sensitive to habitat changes resulting from urbanization.

Objectives

We addressed two questions: (1) What is the relative importance of local and landscape factors in shaping ground-active arthropod communities in urban woodlands? (2) How does body size (as a surrogate for dispersal ability) affect sensitivity to landscape-level factors?

Methods

In the summers of 2010 and 2011, we sampled ground-active arthropod communities in 19 woodlands in the Chicago metropolitan region using pitfall traps. We also assessed local plant and soil characteristics, as well as landscape-level variables using GIS.

Results

Redundancy analyses and variation partitioning revealed that local factors, particularly invasive woody-plant cover and soil nitrate, had the most influence on arthropod communities, explaining 12% of the total variation. Of the landscape-level variables, landscape richness, which is one measure of landscape fragmentation, explained the most variation; however, the shared variance between landscape and local variables was responsible for half (16%) of the total explained variation (32%). Landscape factors alone explained only 4% of variation. No relationship between arthropod body size and landscape variables was observed, but several groups (e.g. ants and ground beetles) were correlated with landscape-level factors.

Conclusions

Our research shows that both local and landscape variables are important in influencing ground-active arthropods, but the majority of explained variance is attributed to the covariation between landscape richness, invasive woody-plant cover, and soil nitrate. We therefore conclude that landscape fragmentation is likely affecting the ground-active arthropods through its positive influence on invasive woody plants and soil nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber JD, Goodale CL, Ollinger SV, Smith M, Magill AH, Martin ME, Hallet RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Article  Google Scholar 

  • Alberti M (2005) The effects of urban patterns on ecosystem function. Int. Regional Sci. Rev. 28:168–192

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: Guide to software and statistical methods. Plymouth, UK

    Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press

  • Barton PS, Evans MJ, Foster CN, Cunningham SA, Manning AD (2017) Environmental and spatial drivers of spider diversity at contrasting microhabitats. Ecol, Austral. https://doi.org/10.1111/aec.12488

    Google Scholar 

  • Bates AJ, Sadler JP, Fairbrass AJ, Falk SJ, Hale JD, Matthews TJ (2011) Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6:e23459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman KO, Ask L, Askling J, Ignell H, Wahlman H, Milberg P (2008) Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors. Biodivers Conserv 17:139–153

    Article  Google Scholar 

  • Bettez ND, Groffman PM (2013) Nitrogen deposition in and near an urban ecosystem. Environ Sci Technol 47:6047–6051

    Article  CAS  PubMed  Google Scholar 

  • Bogyó D, Magura T, Simon E, Tóthmérész B (2015) Millipede (Diplopoda) assemblages alter drastically by urbanisation. Landsc. Urban Plann. 133:118–126

    Article  Google Scholar 

  • Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ (2000) Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Appl 10:1230–1248

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer Publishing

  • Braaker S, Ghazoul J, Obrist M, Moretti M (2014) Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95:1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Goulet H (1998) Landscape and area effects on beetle assemblages in Ontario. Ecography 21:472–479

    Article  Google Scholar 

  • Carvalheiro LG, Buckley YM, Memmott J (2010) Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology 91:1063–1074

    Article  PubMed  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth douglas-fir forests. Ecol Appl 5:74–86

    Article  Google Scholar 

  • Clough Y, Kruess A, Kleijn D, Tscharntke T (2005) Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J Biogeogr 32:2007–2014

    Article  Google Scholar 

  • Coleman DC, Blair JM, Elliott ET, Wall DH (1999) Soil Invertebrates. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press Inc, New York

    Google Scholar 

  • Crawford RL, Sugg PM, Edwards JS (1995) Spider arrival and primary establishment on terrain depopulated by volcanic eruption at Mount St. Helens. Washington. Am. Midl. Nat. 133:60–75

    Article  Google Scholar 

  • Dainese M, Luna DI, Sitzia T, Marini L (2015) Testing scale-dependent effects of seminatural habitats on farmland biodiversity. Ecol Appl 25:1681–1690

    Article  PubMed  Google Scholar 

  • Dauber J, Purtauf T, Allspach A, Frisch J, Voigtländer K, Wolters V (2005) Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob Ecol Biogeogr 14:213–221

    Article  Google Scholar 

  • Development Core Team R (2016) R: A Language and Environment for Statistical Computing. Austria, Vienna

    Google Scholar 

  • Donovan TM, Jones PW, Annand EM, Thompson FR (1997) Variation in local-scale edge effects: mechanisms and landsape context. Ecology 78:2064–2075

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol. Evol. 14:135–139

    CAS  Google Scholar 

  • Fattorini S (2011) Insect rarity, extinction and conservation in urban Rome (Italy): a 120-year-long study of tenebrionid beetles. Insect Conservation and Diversity 4:307–315

    Article  Google Scholar 

  • Fickenscher JL, Litvaitis JA, Lee TD, Johnson PC (2014) Insect responses to invasive shrubs: implications to managing thicket habitats in the northeastern United States. For. Ecol. Manag. 322:127–135

    Article  Google Scholar 

  • Frazer GW, Canham C, Lertzman K (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York

  • Fujita A, Maeto K, Kagawa Y, Ito N (2008) Effects of forest fragmentation on species richness and composition of ground beetles (Coleoptera: carabidae and Brachinidae) in urban landscapes. Entomol. Sci. 11:39–48

    Article  Google Scholar 

  • Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Hong H, Simons NK, Klien A, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter IS, Weiner CN, Weisser W, Werner M, Tscharntke T, Westphal C (2015) Landscape simplification filters species traits and drives biotic homogenization. Nature communications 6:8568

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O'Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol Appl 19:143–154

    Article  CAS  PubMed  Google Scholar 

  • Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100

    Article  Google Scholar 

  • Gonthier DJ, Ennis KK, Farinas S, Hsieh H, Iverson A, Batáry P, Rudolphi J, Tscharntke T, Cardinale B, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc Lond Biol 281:20141358

    Article  Google Scholar 

  • González E, Salvo A, Valladares G (2015) Sharing enemies: evidence of forest contribution to natural enemy communities in crops, at different spatial scales. Insect Conservation and Diversity 8:359–366

    Article  Google Scholar 

  • Gregg JW, Jones CG, Dawson TE (2003) Urbanization effects on tree growth in the vicinity of New York City. Nature 424:183–187

    Article  CAS  PubMed  Google Scholar 

  • Heilig GK (2012) World urbanization prospects: the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York

  • Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Heneghan L, Mulvaney C, Ross K, Umek L, Watkins C, Westphal L, Wise DH (2012) Lessons learned from Chicago wilderness—implementing and sustaining conservation management in an urban setting. Diversity 4:74–93

    Article  Google Scholar 

  • Hoekstra H, Fagan W (1998) Body size, dispersal ability and compositional disharmony: the carnivore-dominated fauna of the Kuril Islands. Divers Distrib 4:135–149

    Article  Google Scholar 

  • Holland JD, Fahrig L, Cappuccino N (2005) Body size affects the spatial scale of habitat–beetle interactions. Oikos 110:101–108

    Article  Google Scholar 

  • Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K (2015) Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information. Photogrammetric Engineering & Remote Sensing 81:345–354

    Google Scholar 

  • Hornung E, Tóthmérész B, Magura T, Vilisics F (2007) Changes of isopod assemblages along an urban–suburban–rural gradient in Hungary. Eur. J. Soil Biol. 43:158–165

    Article  Google Scholar 

  • Hutyra LR, Yoon B, Alberti M (2011) Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Change Biol 17:783–797

    Article  Google Scholar 

  • Jenkins DG, Brescacin CR, Duxbury CV, Elliot JA, Evans JA, Grablow KR, Hillegass M, Lyon BN, Metzer GA, Olandese ML, Pepe D, Silvers GA, Suresch HN, Thompson TN, Trexler CM, Williams GE, Williams NC, Williams SE (2007) Does size matter for dispersal distance? Glob Ecol Biogeogr 16:415–425

    Article  Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, Carvelheiro LG, Chacoff NP, Cunningham SA, Danforth BN, Dudenhöffer J, Elle E, Gaines HR, Garibaldi LA, Gratton C, Holzschuh A, Isaacs R, Javorek SK, Jha S, Klein AM, Krewenka K, Mandelik Y, Mayfield MM, Morandin L, Neame LA, Otieno M, Park M, Potts SG, Rundlöf M, Saez A, Steffan-Dewenter I, Taki H, Viana BF, Westphal C, Wilson JK, Greenleaf SS, Kremen C (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599

    Article  PubMed  Google Scholar 

  • Kormann U, Rösch V, Batáry P, Tscharntke T, Orci K, Samu F, Scherber C (2015) Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib 21:1204–1217

    Article  Google Scholar 

  • Kuebbing SE, Classen AT, Simberloff D (2014) Two co-occurring invasive woody shrubs alter soil properties and promote subdominant invasive species. J Appl Ecol 51:124–133

    Article  Google Scholar 

  • Kuussaari M, Saarinen M, Korpela EL, Pöyry J, Hyvönen T (2014) Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecol. Evol. 4:3800–3811

    Article  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Lessard JP, Buddle CM (2005) The effects of urbanization on ant assemblages (Hymenoptera: formicidae) associated with the Molson Nature Reserve. Quebec. Can. Entomol. 137:215–225

    Article  Google Scholar 

  • Loomis JD, Cameron GN (2014) Impact of the invasive shrub Amur honeysuckle (Lonicera maackii) on shrub-layer insects in a deciduous forest in the eastern United States. Biol Invasions 16:89–100

    Article  Google Scholar 

  • Magura T, Horváth R, Tóthmérész B (2010a) Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landsc. Ecol. 25:621–629

    Article  Google Scholar 

  • Magura T, Lövei GL, Tóthmérész B (2010b) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob Ecol Biogeogr 19:16–26

    Article  Google Scholar 

  • Magura T, Nagy D, Tóthmérész B (2013) Rove beetles respond heterogeneously to urbanization. J Insect Conserv 17:715–724

    Article  Google Scholar 

  • McCary MA, Martínez JC, Umek L, Heneghan L, Wise DH (2015) Effects of woodland restoration and management on the community of surface-active arthropods in the metropolitan Chicago region. Biol Conserv 190:154–166

    Article  Google Scholar 

  • McCary MA, Mores R, Farfan MA, Wise DH (2016) Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecol Lett 19:328–335

    Article  PubMed  Google Scholar 

  • McDonald RI, Kareiva P, Forman RT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703

    Article  Google Scholar 

  • McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plann. 52:257–274

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11:161–176

    Article  Google Scholar 

  • Medel RG (1995) Convergence and historical effects in harvester ant assemblages of Australia, North America, and South America. Biol J Linn Soc 55:29–44

    Article  Google Scholar 

  • Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic Appl Ecol 10:178–186

    Article  Google Scholar 

  • Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33:419–435

    Article  Google Scholar 

  • Niemelä J, Haila Y, Punttila P (1996) The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–368

    Article  Google Scholar 

  • Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol Conserv 127:272–281

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Philpott SM, Cotton J, Bichier P, Friedrich RL, Moorhead LC, Uno S, Valdez M (2014) Local and landscape drivers of arthropod abundance, richness, and trophic composition in urban habitats. Urban Ecosyst. 17:513–532

    Article  Google Scholar 

  • Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landsc. Ecol. 4:133–155

    Article  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Purtauf T, Dauber J, Wolters V (2005) The response of carabids to landscape simplification differs between trophic groups. Oecologia 142:458–464

    Article  PubMed  Google Scholar 

  • Sanford MP, Manley PN, Murphy DD (2009) Effects of urban development on ant communities: implications for ecosystem services and management. Conserv Biol 23:131–141

    Article  PubMed  Google Scholar 

  • Santorufo L, Cortet J, Arena C, Goudon R, Rakota A, Morel JL, Maisto G (2014) An assessment of the influence of the urban environment on collembolan communities in soils using taxonomy-and trait-based approaches. Appl Soil Ecol 78:48–56

    Article  Google Scholar 

  • Sattler T, Borcard D, Arlettaz R, Bontadina F, Legendre P, Obrist MK, Moretti M (2010) Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity. Ecology 91:3343–3353

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287

    Article  Google Scholar 

  • Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81:174–184

    Article  PubMed  Google Scholar 

  • Thompson B, McLachlan S (2007) The effects of urbanization on ant communities and myrmecochory in Manitoba. Canada. Urban Ecosyst. 10:43–52

    Article  Google Scholar 

  • Thornton DH, Fletcher RJ (2014) Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography 37:454–463

    Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, Putten W, Westphal C (2012) Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • van Hengstum T, Hooftman DAP, Oostermeijer JGB, van Tienderen PH, Mack R (2014) Impact of plant invasions on local arthropod communities: a meta-analysis. J Ecol 102:4–11

    Article  Google Scholar 

  • Vergnes A, Pellissier V, Lemperiere G, Rollard C, Clergeau P (2014) Urban densification causes the decline of ground-dwelling arthropods. Biodivers Conserv 23:1859–1877

    Article  Google Scholar 

  • Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landsc. Ecol. 26:461–472

    Article  Google Scholar 

  • Warzecha D, Diekötter T, Wolters V, Jauker F (2016) Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landsc. Ecol. 31:1449–1455

    Article  Google Scholar 

  • Wright P, Cregger MA, Souza L, Sanders NJ, Classen AT (2014) The effects of insects, nutrients, and plant invasion on community structure and function above-and belowground. Ecol. Evol. 4:732–742

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright JP, Flecker AS, Jones CG (2003) Local vs. landscape controls on plant species richness in beaver meadows. Ecology 84:3162–3173

    Article  Google Scholar 

  • Wu T, Hao S, Sun OJ, Kang L (2012) Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming. PLoS ONE 7:e41764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates ED, Levia DF Jr, Williams CL (2004) Recruitment of three non-native invasive plants into a fragmented forest in southern Illinois. For. Ecol. Manag. 190:119–130

    Article  Google Scholar 

  • Zuckerberg B, Desrochers A, Hochachka WM, Fink D, Koenig WD, Dickinson JL (2012) Overlapping landscapes: a persistent, but misdirected concern when collecting and analyzing ecological data. J. Wildl. Manag. 76:1072–1080

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Wise Lab (Nolan Bielinski, Monica Farfan, Amanda Henderson, Brook Herman, Susan Kirt Alterio, José-Cristian Martínez, and Robin Mores) at the University of Illinois at Chicago (UIC) for their support and conceptual guidance. We also thank Ann Sabir and Raed Oswesi for their assistance in identifying arthropods. The research was funded by the Gaylord and Dorothy Donnelley Foundation—a major supporter of the Chicago Wilderness Land Management Research Program, and a UIC Abraham Lincoln Graduate Fellowship awarded to MAM. Many thanks to the two anonymous reviewers for their instructive and helpful comments, which improved the overall quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. McCary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 203 kb)

Supplementary material 2 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCary, M.A., Minor, E. & Wise, D.H. Covariation between local and landscape factors influences the structure of ground-active arthropod communities in fragmented metropolitan woodlands. Landscape Ecol 33, 225–239 (2018). https://doi.org/10.1007/s10980-017-0593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0593-9

Keywords

Navigation