Advertisement

Landscape Ecology

, Volume 32, Issue 1, pp 131–145 | Cite as

Are species genetically more sensitive to habitat fragmentation on the periphery of their range compared to the core? A case study on the sand lizard (Lacerta agilis)

  • Klaus Henle
  • Claudia Andres
  • Detlef Bernhard
  • Annegret Grimm
  • Pavel Stoev
  • Nikolay Tzankov
  • Martin Schlegel
Research Article

Abstract

Context

Species show different sensitivity to habitat loss and fragmentation depending on their specialization. Populations of a species at the range margin are generally assumed to be more stenoecious than populations at the core of the distribution and should therefore be more sensitive to habitat fragmentation.

Objectives

We evaluated the hypothesis that fragmentation effects species more strongly at the range periphery of their range compared to the core, resulting in lower genetic variability in comparable patch sizes and lower gene flow among populations.

Methods

We compared the genetic diversity and structure of five sand lizard (Lacerta agilis) populations at the margin of its range in Bulgaria and of 11 populations at the core of its distribution in Germany. We based the analysis on microsatellites, comprising 15 loci in Bulgaria and 12 in Germany.

Results

All diversity indices declined with patch size. For medium-sized patches all diversity indices were lower at the range periphery compared to the core, with two of them being significant. AICc based model selection showed strong support for core/periphery and patch size effects for observed and expected heterozygosity but only a patch size effect for allelic richness. There was no isolation-by-distance and each sampled population was allocated to a separate cluster with high probability for both countries, indicating that all populations are (almost) completely isolated.

Conclusion

Our study indicates an increased sensitivity of a species to fragmentation at the periphery compared to the core of its distribution. This differential sensitivity should be accounted for when prioritizing species based on their fragmentation sensitivity in landscape management.

Keywords

Lacertidae Fragmentation sensitivity Genetic variability Genetic structure Isolation-by-distance Patch size Range core Range periphery 

Notes

Acknowledgments

We thank Conrad Helm, Stefan Schaffer, Ana María Prieto Ramírez, Ronny Wolf and Nico Hesselbarth for assisting in the field and Heiko Stukkas for assistance concerning some of the statistical analyses.

Supplementary material

10980_2016_418_MOESM1_ESM.docx (98 kb)
Supplementary material 1 (DOCX 97 kb)
10980_2016_418_MOESM2_ESM.xlsx (280 kb)
Supplementary material 2 (XLSX 279 kb)
10980_2016_418_MOESM3_ESM.docx (1.2 mb)
Supplementary material 3 (DOCX 1270 kb)

References

  1. Andres C, Franke F, Bleidorn C, Bernhard D, Schlegel M (2014) Phylogenetic analysis of the Lacerta agilis subspecies complex. Syst Biodivers 12:43–54CrossRefGoogle Scholar
  2. Arenas M, Ray N, Currat M, Excoffier L (2012) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29:207–218CrossRefPubMedGoogle Scholar
  3. Böhme W, Rödder D (2008) Amphibien und Reptilien: Verbreitungs- und Verhaltensänderungen aufgrund der Erderwärmung. In: Lozán JL, Graß H, Jendritzky G, Karbe L, Reise K (eds) Warnsignal Klima: Erderwärmung. Wissenschaftliche Auswertungen. GEO, Hamburg, pp 103–107Google Scholar
  4. Burnham KP, Anderson AR (2002) Model selection and multimodel inference. A practical information–theoretic approach. Springer, New YorkGoogle Scholar
  5. Delaney KS, Riley SPD, Fisher RN (2010) A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS One 5(9):e12767CrossRefPubMedPubMedCentralGoogle Scholar
  6. Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514CrossRefGoogle Scholar
  7. Dudaniec RY, Spear SF, Richardson JS, Storfer A (2012) Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations. PLoS One 7:e36769CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188CrossRefPubMedGoogle Scholar
  9. Elbing K, Günther R, Rahmel U (1996) Zauneidechse—Lacerta agilis Linnaeus, 1758. In: Günther R (ed) Die Amphibien und Reptilien Deutschlands. Fischer, Jena, pp 535–557Google Scholar
  10. ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  11. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  12. Fontaine MC, Baird SJE, Piry S, Ray N, Tolley KA, Duke S, Birkun A, Ferreira M, Jauniaux T, Llavona A, Öztürk B, Öztürk AA, Ridoux V, Rogan E, Sequeira M, Siebert U, Vikingsson GA, Bouquegneau J-M, Johan R, Michaux JR (2007) Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters. BMC Biol 5(30). doi: 10.1186/1741-7007-5-30
  13. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  14. Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 19:3845–3852CrossRefPubMedGoogle Scholar
  15. Goslee S, Urban D (2012) ecodist: Dissimilarity-based functions for ecological analysis. Version 1.2.7. Available from http://cran.r-project.org/web/packages/ecodist/index.html. Accessed November 2013
  16. Grimm A, Prieto Ramirez AM, Moulherat S, Reynaud J, Henle K (2014) Life-history trait database of European reptile species. Nat Conserv 9:45–67CrossRefGoogle Scholar
  17. Grosse W-R (2009) Verbreitung der Kriechtiere (Reptilia) in der Stadt Leipzig (Sachsen). Jahresschr Feldherpetol Ichthyofaun Sachsen 11:47–75Google Scholar
  18. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic differentiation—the correlated allele frequencies model revisited. Bioinformatics 24:2222–2228CrossRefPubMedGoogle Scholar
  19. Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  20. Gullberg A, Tegelström H, Olsson M (1997) Microsatellites in the sand lizard (Lacerta agilis): description, variation, inheritance, and applicability. Biochem Genet 35:281–295CrossRefPubMedGoogle Scholar
  21. Haase D, Nuissl H (2010) The urban-to-rural gradient of land use change and impervious cover: a long-term trajectory for the city of Leipzig. J Land Use Sci 5:123–141CrossRefGoogle Scholar
  22. Heller R, Siegismund HR (2009) Relationship between three measures of genetic differentiation GST, DEST and G’ST: how wrong have we been? Mol Ecol 18(10): 2080-2083CrossRefPubMedGoogle Scholar
  23. Henle K, Davies KF, Kleyer M, Margules CR, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  24. Hirt S (2008) Landscapes of postmodernity: changes in the built fabric of Belgrade and Sofia since the end of socialism. Urban Geogr 29:785–810CrossRefGoogle Scholar
  25. Hoehn M, Sarre S, Henle K (2007) The tales of two geckos: does dispersal prevent extinction in recently fragmented populations? Mol Ecol 16:3299–3312CrossRefPubMedGoogle Scholar
  26. Jellinek S, Driscoll DA, Kirkpatrick JB (2004) Environmental and vegetation variables have a greater influence than habitat fragmentation in structuring lizard communities in remnant urban bushland. Aust Ecol 29:294–304CrossRefGoogle Scholar
  27. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  28. Kalinowski ST (2005) Hp-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  29. Kalyabina SA, Milto KD, Ananjeva NB, Legal L, Joger U, Wink M (2001) Phylogeography and systematics of Lacerta agilis based on mitochondrial cytochrome B gene sequences: first results. Russ J Herpetol 8:149–158Google Scholar
  30. Märtens B (1999) Demographisch ökologische Untersuchung zu Habitatqualität, Isolation und Flächenanspruch der Zauneidechse (Lacerta agilis, Linnaeus, 1758) in der Porphyrkuppenlandschaft bei Halle (Saale) Bremen. PhD University of Bremen, BremenGoogle Scholar
  31. Mazerolle MJ (2013) AICcmodavg: model selection and multimodal inference based on (Q)AIC(c). Version 1.33. http://cran.r-project.org/web/packages/AICcmodavg/index.html. Accessed 11 Nov 2013
  32. Miller JR, Hobbs RJ (2002) Conservation where people live and work. Conserv Biol 16:330–337CrossRefGoogle Scholar
  33. Mona S, Ray N, Arenas M, Excoffier L (2014) Genetic consequences of habitat fragmentation during a range expansion. Heredity 112:291–299CrossRefPubMedGoogle Scholar
  34. Munwes I, Geffen E, Roll U, Friedmann A, Daya A, Tikochinski Y, Gafny S (2010) The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol Ecol 19:2675–2689CrossRefPubMedGoogle Scholar
  35. Nei M (1973) Analysis of gene diversity in subdivided populations. PNAS 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  36. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett. 13:969–979PubMedGoogle Scholar
  37. Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158CrossRefGoogle Scholar
  38. Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2:278–282CrossRefGoogle Scholar
  39. R Core Team (2015) A language and environment for statistical computing. Version 3.1.1. Available at: http://www.r-project.org/
  40. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:9–10Google Scholar
  41. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  42. Schwartz TS, Olsson M (2008) Microsatellite markers developed for a Swedish population of sand lizard (Lacerta agilis). Conserv Genet 9:715–717CrossRefGoogle Scholar
  43. Sillero N, Campos J, Bonardi A, Corti C, Creemers R, Crochet P-A, Crnobrnja Isailovic J, Denoël M, Ficetola GF, Gonçalves J, Kuzmin S, Lymberakis P, de Pous P, Rodríguez A, Sindaco R, Speybroeck J, Toxopeus B, Vieites DR, Vences M (2014) Updated distribution and biogeography of amphibians and reptiles of Europe. Amphib Reptil 35:1–31CrossRefGoogle Scholar
  44. Soulé ME (1986) Viable populations for conservation. Cambridge University Press, CambridgeGoogle Scholar
  45. Stoyanov A, Tzankov N, Naumov B (2011) Die Amphibien und Reptilien Bulgariens. Chimaira, Frankfurt am MainGoogle Scholar
  46. Tukey JW (1959) A quick, compact two-sample test to Duckworth’s specifications. Technometrics 1:31–48Google Scholar
  47. Tzankov N, Popgeorgiev G, Kornilev Y, Petrov B, Zidarova S, Stefanov T (2015) Sofia. In: Kelcey J (ed) Vertebrates and invertebrates of European cities: selected non-avian fauna. Springer, New York, pp 179–206CrossRefGoogle Scholar
  48. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  49. Wright S (1951) The genetical structure of populations. Ann Eugenics 15:323–354CrossRefGoogle Scholar
  50. Wright S (1978) Evolution and the genetics of populations. Genetics 16:97–159Google Scholar
  51. Young AG, Clarke GM (2000) Genetics, demography and viability of fragmented populations. University of Chicago Press, ChicagoCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Conservation BiologyUFZ – Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Working group Molecular Evolution and Animal Systematics, Institute of BiologyUniversity of LeipzigLeipzigGermany
  3. 3.iDIV–German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  4. 4.Invertebrates DepartmentNational Museum of Natural History, SofiaSofiaBulgaria
  5. 5.Pensoft Publishers Ltd.SofiaBulgaria
  6. 6.Vertebrates DepartmentNational Museum of Natural History, SofiaSofiaBulgaria

Personalised recommendations