Skip to main content

Advertisement

Log in

High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Predicting climate-driven species’ range shifts depends substantially on species’ exposure to climate change. Mountain landscapes contain a wide range of topoclimates and soil characteristics that are thought to mediate range shifts and buffer species’ exposure. Quantifying fine-scale patterns of exposure across mountainous terrain is a key step in understanding vulnerability of species to regional climate change.

Objectives

We demonstrated a transferable, flexible approach for mapping climate change exposure in a moisture-limited, mountainous California landscape across 4 climate change projections under phase 5 of the Coupled Model Intercomparison Project (CMIP5) for mid-(2040–2069) and end-of-century (2070–2099).

Methods

We produced a 149-year dataset (1951–2099) of modeled climatic water deficit (CWD), which is strongly associated with plant distributions, at 30-m resolution to map climate change exposure in the Tehachapi Mountains, California, USA. We defined climate change exposure in terms of departure from the 1951–1980 mean and historical range of variability in CWD in individual years and 3-year moving windows.

Results

Climate change exposure was generally greatest at high elevations across all future projections, though we encountered moderate topographic buffering on poleward-facing slopes. Historically dry lowlands demonstrated the least exposure to climate change.

Conclusions

In moisture-limited, Mediterranean-climate landscapes, high elevations may experience the greatest exposure to climate change in the 21st century. High elevation species may thus be especially vulnerable to continued climate change as habitats shrink and historically energy-limited locations become increasingly moisture-limited in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB (2010) The geography of climate change: implications for conservation biogeography. Divers Distrib 16:476–487

    Article  Google Scholar 

  • Anderson EA (1976) A point energy and mass balance model of a snow cover. Technical report NWS 19. U.S National Oceanographic and Atmospheric Administration (NOAA). Silver Spring, MD

  • Anderson MG, Clark M, Sheldon AO (2014) Estimating climate resilience for conservation across geophysical settings. Conserv Biol 28:959–970

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashcroft MB, Gollan JR, Warton DI, Ramp D (2012) A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. Glob Change Biol 18:1866–1879

    Article  Google Scholar 

  • Beaumont LJ, Pitman A, Perkins S (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci 108:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito-Garzon M, Leadley PW, Fernandez-Manjarres JF (2014) Assessing global biome exposure to climate change through the Holocene-Anthropocene transition. Glob Ecol Biogeogr 23:235–244

    Article  Google Scholar 

  • Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of north European trees. J Biogeogr 18:103–115

    Article  Google Scholar 

  • Berg N, Hall A (2015) Increased interannual precipitation extremes over California under climate change. J Clim 28:6324–6334

    Article  Google Scholar 

  • Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116:1983–1994

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28:482–488

    Article  PubMed  Google Scholar 

  • Curtis JA, Flint LE, Flint AL, Lundquist JD, Hudgens B, Boydston EE, Young JK (2014) Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA. PLoS One. doi:10.1371/journal.pone.0106984

    Google Scholar 

  • Daly C, Halbleib M, Smith JI, Gibson WP, Dogget MK, Taylor GH, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031. doi:10.1002/joc

    Article  Google Scholar 

  • Davis FW, Sweet LC (2012) From mountain microclimates to the macroecology of tree species distributions in California. Mt Views 6:2–5

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  CAS  PubMed  Google Scholar 

  • De Frenne, P, Rodriguez-Sanchez F, Coomes DA, Baeten L, Verstraeten G, Vellend M, Bernhardt-Romermann M, Brown CD, Brunet J, Cornelis J, Decocq GM, Dierschke H, Eriksson O, Gilliam FS, Hedl R, Heinken T, Hermy M, Hommel P, Jenkins MA, Kelly DL, Kirby KJ, Mitchell FJG, Naaf T, Newman M, Peterken G, Petrik P, Schultz J, Sonnier G, Van Calster H, Waller DW, Walther G, White PS, Woods KD, Wulf M, Graae BJ, Verheyen K (2013) Microclimate moderates plant responses to macroclimate warming. Proc Natl Acad Sci USA 110:18561–18565

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingman JR, Sweet LC, McCullough I, Davis FW, Flint A, Franklin J, Flint LE (2013) Cross-scale modeling of surface temperature and tree seedling establishment in mountain landscapes. Ecol Process 2:1–15

    Article  Google Scholar 

  • Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biol 17:1022–1035

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Flint LE, Flint AL (2012) Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol Process 1:1–15

    Article  Google Scholar 

  • Flint LE, Flint AL (2014) California Basin characteristic model: a dataset of historical and future hydrologic response to climate change: U.S. Geological Survey data release. doi:10.5066/F76T0JPB

  • Flint AL, Flint LE, Hevesi JA, Blainey JB (2004) Fundamental concepts of recharge in the desert southwest: a regional modeling perspective. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: The Southwestern United States. American Geophysical Union, Washington. doi:10.1029/009WSA10

    Google Scholar 

  • Flint LE, Flint AL, Thorne JH, Boynton R (2013) Fine-scale hydrologic modeling for regional landscape applications: the California Basin characterization model development and performance. Ecol Process 2:1–21

    Article  Google Scholar 

  • Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Change Biol 19:473–483

    Article  Google Scholar 

  • Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodriguez-Sanchez F, Dobrowski SZ, Hampe A, Hu FS, Ashcroft MB, Bartlein PJ, Blois JS, Carstens BC, Davis EB, Lafontaine G, Edwards ME, Fernandez M, Henne PD, Herring EM, Holden ZA, Kong W, Liu J, Magri D, Matzke NJ, McGlone MS, Saltre F, Stigall AL, Tsai YE, Williams JW (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phyto 204:37–54

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Alonso JLB Coldea G, Dick J, Erschbamer B, Calzado MRF, Kazakis G, Krajci J, Larsson P, Mallum M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115

    Article  Google Scholar 

  • Guarín A, Taylor AH (2005) Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manag 218:229–244

    Article  Google Scholar 

  • Hall A (2014) Projecting regional change. Science 346(6216):1461–1462

    Article  CAS  PubMed  Google Scholar 

  • Hannah L, Flint L, Syphard AD, Moritz MA, Buckley LB, McCullough IM (2014) Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol 29:390–397

    Article  PubMed  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ (2015) Raster: geographic data analysis and modeling. R package version 2.3-33. http://CRAN.R-project/org/package=raster

  • Hobbs RJ, Yates S, Mooney HA (2007) Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecol Mongr 77:545–568

    Article  Google Scholar 

  • Hylander K, Ehrlén J, Luoto M, Meineri E (2015) Microrefugia: not for everyone. AMBIO 44:60–68

    Article  PubMed Central  Google Scholar 

  • Katz R, Brown B (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  • Keppel G, Mokany K, Wardell-Johnson GW, Phillips BL, Welbergen J, Reside AE (2015) The capacity of refugia for conservation planning under climate change. Front Ecol Environ 13:106–112

    Article  Google Scholar 

  • Klausmeyer KR, Shaw MR, MacKenzie JB, Cameron DR (2011) Landscape-scale indicators of biodiversity’s vulnerability to climate change. Ecosphere 2:art 88. doi:10.1890/ES11-00044.1

  • Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188

    Google Scholar 

  • Lenoir J, Graae BJ, Aarrestad PA, Alsos IG, Armbruster WS, Austrheim G, Bergendorff C, Birks HJB, Brathen KA, Brunet J, Bruun HH, Dahlberg CJ, Decocq G, Diekmann M, Dynesius M, Ejrnaes R, Grytnes J, Hylander K, Klanderud K, Luoto M, Milbau A, Moora M, Nygaard B, Odland A, Ravolainen VT, Reinhardt S, Sandvik SM, Schei FH, Speed JDM, Tveraabak LU, Vandvik V, Velle LG, Virtanen R, Zobel M, Svenning J (2013) Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob Change Biol 19:1470–1481

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    Article  CAS  PubMed  Google Scholar 

  • Lutz JA, van Wagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. J Biogeogr 37:936–950

    Article  Google Scholar 

  • Maher SP, Morelli TL, Hershey M, Flint AL, Flint LE, Moritz C, Beissinger SR (in review) Erosion of refugia in the Sierra Nevada meadows network with climate change

  • McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098

    Article  Google Scholar 

  • NRCS (2006) Natural Resources Conservation Service: U.S. General Soil Map (SSURGO/STATSGO2). http://www.ftw.nrcs.usda.gov/stat_data.html, http://soils.usda.gov/survey/geography/statsgo/description.html

  • Patsiou TS, Conti E, Zimmermann NE, Theodoridis S, Randin CF (2014) Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob Change Biol 20:2286–2300

    Article  Google Scholar 

  • Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4:4364

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter KA, Arthur Woods H, Pincebourde S (2013) Microclimatic challenges in global change biology. Glob Change Biol 19:2932–2939

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change 114:527–547

    Article  Google Scholar 

  • Rangwala I, Sinsky E, Miller JR (2013) Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ Res Lett. doi:10.1088/1748-9326/8/2/024040

    Google Scholar 

  • Ripley B (2015) tree: Classification and regression trees. R package version 1.0-36. http://CRAN.R-project.org/package=tree

  • Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate: the biological environment. Wiley, New York

    Google Scholar 

  • Rull V (2009) Microrefugia. J Biogeogr 36:481–484

    Article  Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci USA 109:8606–8611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra-Diaz JM, Franklin J, Ninyerola M, Davis FW, Syphard AD, Regan HM, Ikegami M (2014) Bioclimatic velocity: the pace of species exposure to climate change. Divers Distrib 20:169–180

    Article  Google Scholar 

  • Serra-Diaz JM, Scheller RM, Syphard AD, Franklin J (2015) Disturbance and climate microrefugia mediate tree range shifts during climate change. Landscape Ecol 30:1039–1053

    Article  Google Scholar 

  • Stephenson N (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870

    Article  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B-Biol Sci 277:661–671

    Article  Google Scholar 

  • Tague C, Peng H (2013) The sensitivity of forest water use to the timing of precipitation and snowmelt recharge in the California Sierra: implications for a warming climate. J Geophys Res-Biogeosci 118:875–887

    Article  Google Scholar 

  • Thorne JH, Boynton RM, Flint LE, Flint AL (2015) The magnitude and spatial patterns of future hydrologic change in California’s watersheds. Ecosphere 6:art 24. 10.1890/ES14-00300.1

  • Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC (2002) Buffered tree population changes in a Quaternary refugium: evolutionary implications. Science 297:2044–2047

    Article  CAS  PubMed  Google Scholar 

  • USDA (2015) U.S. Department of Agriculture. https://soilseries.sc.egov.usda.gov/. Accessed 24 Mar 2015

  • Van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B, Wonink S, Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159

    Article  CAS  Google Scholar 

  • Vicente-Serrano SM, Gouveia C, Camarero JJ, Begueria S, Trigo R, Lopez-Moreno JI, Azorin-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci 110:52–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss SB, Flint L, Flint A, Micheli L (in review) Choosing your futures: high resolution climate-hydrology scenarios for San Francisco Bay Area, California

  • Western Regional Climate Center (2015) Desert Research Institute. http://www.wrcc.dri.edu/. Accessed 21 Jan 2015

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci 104:5738–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6:e325

    Article  PubMed Central  Google Scholar 

  • Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change. Glob Change Biol 18:1042–1052

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding support from the National Science Foundation Macrosystems Biology Program, NSF #EF-1065864. We thank our collaborating investigators A. Hall, K. Redmond and H. Regan for associated projects that led to this paper. We also thank J. Frew, C. Tague and L. Sweet for useful comments and suggestions. We thank the Tejon Ranch Company and the Tejon Ranch Conservancy for cooperation and land access. JM S-D acknowledges further support from the GRUMETS team 2014 SGR 1491 Generalitat de Catalunya grant. Finally, we appreciate useful comments from the journal subject editor and four peer reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. McCullough.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCullough, I.M., Davis, F.W., Dingman, J.R. et al. High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecol 31, 1063–1075 (2016). https://doi.org/10.1007/s10980-015-0318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0318-x

Keywords

Navigation