Landscape Ecology

, Volume 31, Issue 1, pp 181–194 | Cite as

Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change

  • Scott C. Stark
  • David D. Breshears
  • Elizabeth S. Garcia
  • Darin J. Law
  • David M. Minor
  • Scott R. Saleska
  • Abigail L. S. Swann
  • Juan Camilo Villegas
  • Luiz E. O. C. Aragão
  • Elizabeth M. Bella
  • Laura S. Borma
  • Neil S. Cobb
  • Marcy E. Litvak
  • William E. Magnusson
  • John M. Morton
  • Miranda D. Redmond
Research Article



Vegetation is projected to continue to undergo major structural changes in coming decades due to land conversion and climate change, including widespread forest die-offs. These vegetation changes are important not only for their local or regional climatic effects, but also because they can affect climate and subsequently vegetation in other regions or continents through “ecoclimate teleconnections”.


We propose that ecoclimate teleconnections are a fundamental link among regions within and across continents, and are central to advancing large-scale macrosystems ecology.

Methods and results

We illustrate potential ecoclimate teleconnections in a bounding simulation that assumes complete tree cover loss in western North America due to tree die-off, and which predicts subsequent drying and reduced net primary productivity in other areas of North America, the Amazon and elsewhere. Central to accurately modeling such ecoclimate teleconnections is characterizing how vegetation change alters albedo and other components of the land-surface energy balance and then scales up to impact the climate system. We introduce a framework for rapid field-based characterization of vegetation structure and energy balance to help address this challenge.


Ecoclimate teleconnections are likely a fundamental aspect of macrosystems ecology needed to account for alterations to large-scale atmospheric-ecological couplings in response to vegetation change, including deforestation, afforestation and die-off.


Amazon CESM Ecoclimate teleconnections Energy balance Forest die-off Hemispherical photography LiDAR Macrosystems ecology North America Vegetation change 



This work was supported primarily through NSF EF-1340624, EF-1340649 & EF-1340604; additional support provided by Arizona Agricultural Experiment Station; Estrategia de Sostenibilidad 2014–2015 Universidad de Antioquia; PPBio-CENBAM; L.E.O.C.A. acknowledges the support of the CNPq Fellowship and FAPESP (Grant 2013/50533-5). L.S.B acknowledges the support of the FAPESP (Grant 2013/50531-2). We would also like to acknowledge the contributions of anonymous reviewers to improving the manuscript.


  1. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global- change-type drought. Proc Natl Acad Sci 106(17):7063–7066PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci 95(25):14839–14842PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684CrossRefGoogle Scholar
  4. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability of tree mortality and forest die-off to hotter drought in the Anthropocene. Ecosphere 6(8):129CrossRefGoogle Scholar
  5. American Institute of Biological Sciences (2004) Ecological impacts of climate change: Report from a NEON Science Workshop. AIBS, WashingtonGoogle Scholar
  6. Anderegg ARL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3(20–36):715Google Scholar
  7. Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34(7):L07701CrossRefGoogle Scholar
  8. Avissar R, Werth D (2005) Global hydroclimatological teleconnections resulting from tropical deforestation. J Hydrometeorol 6(2):134–145CrossRefGoogle Scholar
  9. Avissar R, Silva Dias PL, Silva Dias MAF, Nobre C (2002) The large-scale biosphere–atmosphere experiment in Amazonia (LBA): insights and future research needs. J Geophys Res: Atmospheres (1984–2012) 107(D20):LBA-54Google Scholar
  10. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434CrossRefGoogle Scholar
  11. Bonan GB (2008) Forests and climate change: forcings, feed-backs, and the climate benefits of forests. Science 320(5882):1444–1449PubMedCrossRefGoogle Scholar
  12. Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B 363(1498):1839–1848CrossRefGoogle Scholar
  13. Breshears DD (2006) The grassland-forest continuum: trends in ecosystem properties for woody plant mosaics? Front Ecol Environ 4(2):96–104CrossRefGoogle Scholar
  14. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci 102(42):15144–15148PubMedPubMedCentralCrossRefGoogle Scholar
  15. Breshears DD, Whicker JJ, Zou CB, Field JP, Allen CD (2009) A conceptual framework for dryland aeolian sediment transport along the grassland–forest continuum: effects of woody plant canopy cover and disturbance. Geomorphology 105(1):28–38CrossRefGoogle Scholar
  16. Breshears DD, Adams HD, Eamus D, McDowell NG, Law DJ, Will RE, Williams AP, Zou CB (2013) The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front Plant Sci 4(266):1–4Google Scholar
  17. Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R, Alexiades M, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard CGA, Bánki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Honorio Coronado EN, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Núñez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Guimarães Vieira IC, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519(7543):344–348PubMedCrossRefGoogle Scholar
  18. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–755PubMedGoogle Scholar
  19. Costa MH, Pires GF (2010) Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int J Climatol 30:1970–1979CrossRefGoogle Scholar
  20. Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78(1–3):137–156Google Scholar
  21. da Costa A, Galbraith D, Almeida S, Tanaka Portela BT, da Costa M, de Athaydes Silva Junior J, Braga AP, de Gonçalves PHL, de Oliveira AAR, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P (2010) Effect of 7 years of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187(3):579–591PubMedCrossRefGoogle Scholar
  22. da Rocha HR, Manzi AO, Cabral OM, Miller SD, Goulden ML, Saleska SR, Restrepo-Coupe N, Wofsy SC, Borma LS, Artaxo P, Vourlitis G, Nogueira JS, Cardoso FL, Nobre AD, Kruijt B, Freitas HC, von Randow C, Aguiar RG, Maia JF (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in brazil. J Geophy Res (2005–2012) 114(G1)Google Scholar
  23. Devaraju N, Bala G, Modak A (2015) Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proc Natl Acad Sci 112(11):3257–3262PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dominguez F, Villegas JC, Breshears DD (2009) Spatial extent of the North American Monsoon: increased cross-regional linkages via atmospheric pathways. Geophys Res Lett 36(7)Google Scholar
  25. Feddema J, Oleson K, Bonan G, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678PubMedCrossRefGoogle Scholar
  26. Fisher RA, Williams M, Costa D, Lola A, Malhi Y, da Costa RF, Almeida S, Meir P (2007) The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob Change Biol 13(11):2361–2378CrossRefGoogle Scholar
  27. Fisher JB, Malhi Y, Bonal D, da Rocha HR, de Araújo AC, Gamo M, Goulden ML, Hirano T, Huete AR, Kondo H, Kumagai T, Loescher HW, Miller S, Nobre AD, Nouvellon Y, Oberbauer SF, Panuthai S, Roupsard O, Saleska S, Tanaka K, Tanaka N, Tu KP, von Randow C (2009) The land-atmosphere water flux in the tropics. Glob Change Biol 15(11):2694–2714CrossRefGoogle Scholar
  28. Fisher RA, Muszla S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM, Lawrence D, Bonan G (2015) Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes. Geosci Model Dev Discuss 8:3293–3357CrossRefGoogle Scholar
  29. Garcia ES, Swann ALS, Breshears DD, Villegas JC, Stark SC, Saleska SR, Minor DM, Law D (in prep) Global consequences of forest die-off in North and South AmericaGoogle Scholar
  30. Goulden ML, Winston GC, McMillan AMS, Litvak ME, Read EL, Rocha AV, Elliot JR (2006) An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange. Glob Change Biol 12:2146–2162CrossRefGoogle Scholar
  31. Hasler N, Avissar R (2007) What controls evapotranspiration in the Amazon basin? J Hydrometeorol 8(3):380–395CrossRefGoogle Scholar
  32. Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14CrossRefGoogle Scholar
  33. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San JoseGoogle Scholar
  34. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374CrossRefGoogle Scholar
  35. Keller M, Schimel DS, Hargrove WW, Hoffman FM (2008) A continental strategy for the National Ecological Observatory Network. Front Ecol Environ 6:282–284CrossRefGoogle Scholar
  36. Lawrence D, Vandecar K (2015) Effects of tropical deforestation on climate and agriculture. Nat Clim Change 5:27–36CrossRefGoogle Scholar
  37. Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. Bioscience 52(1):19–30CrossRefGoogle Scholar
  38. Litvak ME, Morillas-Gonzales L, Krofcheck D, Fox AM, Maurer G (in prep) Carbon and energy balance consequences of widespread mortality in piñon-juniper woodlandsGoogle Scholar
  39. Luo Y, Randerson JT, Abramowitz G, Luo YQ, Randerson JT, Abramowitz G, Bacour C, Blyth E, Carvalhais N, Ciais P, Dalmonech D, Fisher JB, Fisher R, Friedlingstein P, Hibbard K, Hoffman F, Huntzinger D, Jones CD, Koven C, Lawrence D, Li DJ, Mahecha M, Niu SL, Norby R, Piao SL, Qil X, Peylin P, Prentice IC, Riley W, Reichstein M, Schwalm C, Wang YP, Xia JY, Zaehle S, Zhou XH (2012) A framework for benchmarking land models. Biogeosciences 9:3857–3874CrossRefGoogle Scholar
  40. Makarieva AM, Gorshkov VG, Li B-L (2013) Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor Appl Climatol 111:79–96CrossRefGoogle Scholar
  41. Maness H, Kushner P, Fung I (2012) Summertime climate response to mountain pine beetle disturbance in British Columbia. Nat Geosci 6(1):65–70Google Scholar
  42. Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio de Oliveira G, De Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516CrossRefGoogle Scholar
  43. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739PubMedCrossRefGoogle Scholar
  44. McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26(10):523–532PubMedCrossRefGoogle Scholar
  45. Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J Geophys Res (2005–2012) 114(G1)Google Scholar
  46. Medvigy D, Walko RL, Otte M, Avissar R (2013) Simulated changes in Northwest US climate in response to Amazon deforestation. J Clim 26:9115–9136CrossRefGoogle Scholar
  47. Miller SD, Goulden ML, Hutyra LR, Keller M, Saleska SR, Wofsy SC, Silva Figueira AM, da Rocha HR, de Camargo PB (2011) Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc Natl Acad Sci 108(48):19431–19435PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88(9):2259–2269PubMedCrossRefGoogle Scholar
  49. Parker GG, Harding DJ, Berger ML (2004a) A portable LIDAR system for rapid determination of forest canopy structure. J Appl Ecol 41(4):755–767CrossRefGoogle Scholar
  50. Parker GG, Harmon ME, Lefsky MA, Chen J, Van Pelt R, Weis SB, Thomas SC, Winner WE, Shaw DC, Frankling JF (2004b) Three-dimensional structure of an old-growth Pseudotsuga–Tsuga canopy and its implications for radiation balance, microclimate, and gas exchange. Ecosystems 7(5):440–453CrossRefGoogle Scholar
  51. Peacock J, Baker TR, Lewis SL, Lopez-Gonzalez G, Phillips OL (2007) The RAINFOR database: monitoring forest biomass and dynamics. J Veg Sci 18(4):535–542CrossRefGoogle Scholar
  52. Peters DPC, Groffman PM, Nadelhoffer KJ, Grimm NB, Collins SL, Michener WK, Huston MA (2008) Living in an increasingly connected world: a framework for continental-scale environmental science. Front Ecol Environ 6:229–237CrossRefGoogle Scholar
  53. Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, Alves de Oliveira AC, Dávila Cardozo N, Czimczik CI, Feldpausch TR, Aparecida Freitas M, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela CM, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vásquez R, Zelazowski P, Alvarez Dávila E, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio CE, Keeling H, Killeen TJ, Laurance WF, Peña Cruz A, Pitman NCA, Núñez Vargas P, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347PubMedCrossRefGoogle Scholar
  54. Phillips OL, Van der Heijden G, Lewis SL, López-González G, Aragão LEOC, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Alvarez Dávila E, Amaral I, Andelman S, Andrade A, Arroyo L, Aymard G, Baker TR, Blanc L, Bonal D, Alves de Oliveira AC, Chao KJ, Dávila Cardozo N, da Costa L, Feldpausch TR, Fisher JB, Fyllas NM, Freitas MA, Galbraith D, Gloor E, Higuchi N, Honorio E, Jiménez E, Keeling H, Killeen TJ, Lovett JC, Meir P, Mendoza C, Morel A, Nuñez Vargas P, Patiño S, Peh KSH, Peña Cruz A, Prieto A, Quesada CA, Ramírez F, Ramírez H, Rudas A, Salamão R, Schwarz M, Silva J, Silveira M, Ferry Slik JW, Sonké B, Sota Thomas A, Stropp J, Taplin JRD, Vásquez R, Vilanova E (2010) Drought–mortality relationships for tropical forests. New Phytol 187(3):631–646PubMedCrossRefGoogle Scholar
  55. Rich PM, Wood J, Vieglais DA, Burek K, Webb N (1999) Guide to hemi-view: software for analysis of hemispherical photography, manual. Delta-T Devices, CambridgeGoogle Scholar
  56. Royer PD, Breshears DD, Zou CB, Cobb NS, Kurc SA (2010) Ecohydrological energy inputs in semiarid coniferous gradients: responses to management-and drought-induced tree reductions. For Ecol Manag 260(10):1646–1655CrossRefGoogle Scholar
  57. Royer PD, Cobb NS, Clifford MJ, Huang CY, Breshears DD, Adams HD, Villegas JC (2011) Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. J Ecol 99(3):714–723CrossRefGoogle Scholar
  58. Saatchi S, Asefi-Najafabady S, Malhi Y, Saatchi S, Asefi-Najafabadyb S, Malhi Y, Aragão LEOC, Anderson LO, Myneni RB, Nemani R (2013) Persistent effects of a severe drought on Amazonian forest canopy. Proc Natl Acad Sci 110(2):565–570PubMedPubMedCentralCrossRefGoogle Scholar
  59. Shuttleworth WJ (2012) Terrestrial hydrometeorology. Wiley, ChichesterCrossRefGoogle Scholar
  60. Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(282–285):892Google Scholar
  61. Stark SC, Leitold V, Wu JL, Enquist BJ, Saleska SR, Leitold V, Schietti J, Longo M, Alves LF, Camargo PB, Oliveira RC (2012) Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol Lett 15(12):1406–1414PubMedCrossRefGoogle Scholar
  62. Stark SC, Enquist BJ, Saleska SR, Leitold V, Wu J, Hunter MO, Lefsky MA, McMahon SM, Parker GG, Shimabukuro MT, Castilho CV, Schietti J, Shimabukuro YE, Costa FRC, Brandão DO, Woodcock TK, Higuchi N, Camargo PB, Oliveira RC, Saleska SR (2015) Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. Ecol Lett 18(7):636–645PubMedCrossRefGoogle Scholar
  63. Swann ALS, Fung IY, Chiang JCH (2012) Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc Natl Acad Sci 109(3):712–716PubMedPubMedCentralCrossRefGoogle Scholar
  64. van Mantgem PJ, Stephenson NL, Byrne JC, van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the western United States. Science 323(5913):521–524PubMedCrossRefGoogle Scholar
  65. Villegas JC, Breshears DD, Zou CB, Royer PD (2010) Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zone J 9(3):537–547CrossRefGoogle Scholar
  66. Villegas JC, Espeleta JE, Morrison CT, Breshears DD, Huxman TE (2014) Factoring in canopy cover heterogeneity on evapotranspiration partitioning: beyond big-leaf surface homogeneity assumptions. J Soil Water Conserv 69(3):78A–83ACrossRefGoogle Scholar
  67. Villegas JC, Dominguez F, Barron-Gafford GA, Adams HD, Guardiola-Claramonte M, Sommer ED, Selvey AW, Villegas JC, Dominguez F, Barron-Gafford GA, Adams HD, Guardiola-Claramonte M, Sommer ED, Selvey AW, Espeleta JF, Zou CB, Breshears DD, Huxman TE (2015) Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics. Glob Ecol Biogeogr 24(9):1040–1048CrossRefGoogle Scholar
  68. Walker MD, Wahren CH, Hollister RD, Henryd GHR, Ahlquist LE, Alatalo JM, Bret-Harteh MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttirk IS, Klein JA, Magnússon B, Molau U, Oberbauerf SF, Rewan SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totlandt Ø, Lee Turner P, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103(5):1342–1346PubMedPubMedCentralCrossRefGoogle Scholar
  69. Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW (2010) Forest responses to increasing aridity and warmth in the southwestern United States. Proc Natl Acad Sci 107(50):21289–21294PubMedPubMedCentralCrossRefGoogle Scholar
  70. Williams AP, Allen CD, Macalady AK, Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3(3):292–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Scott C. Stark
    • 1
  • David D. Breshears
    • 2
  • Elizabeth S. Garcia
    • 3
  • Darin J. Law
    • 4
  • David M. Minor
    • 1
  • Scott R. Saleska
    • 5
  • Abigail L. S. Swann
    • 6
  • Juan Camilo Villegas
    • 7
    • 8
  • Luiz E. O. C. Aragão
    • 9
    • 10
  • Elizabeth M. Bella
    • 11
    • 17
  • Laura S. Borma
    • 12
  • Neil S. Cobb
    • 13
  • Marcy E. Litvak
    • 14
  • William E. Magnusson
    • 15
  • John M. Morton
    • 11
  • Miranda D. Redmond
    • 16
  1. 1.Department of ForestryMichigan State UniversityEast LansingUSA
  2. 2.School of Natural Resources and the Environment and joint with Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  3. 3.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA
  4. 4.School of Natural Resources and the EnvironmentTucsonUSA
  5. 5.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  6. 6.Department of Atmospheric Sciences and Department of BiologyUniversity of WashingtonSeattleUSA
  7. 7.GIGA Group, School of EnvironmentUniversity of AntioquiaMedellínColombia
  8. 8.School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonUSA
  9. 9.Remote Sensing DivisionNational Institute for Space ResearchSão José dos CamposBrazil
  10. 10.College of Life and Environmental SciencesUniversity of ExeterExeterUK
  11. 11.U.S. Fish and Wildlife ServiceKenai National Wildlife RefugeSoldotnaUSA
  12. 12.Centre for Earth System ScienceNational Institute for Space ResearchSão José dos CamposBrazil
  13. 13.Merriam-Powell Center for Environmental ResearchNorthern Arizona UniversityFlagstaffUSA
  14. 14.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  15. 15.National Institute of Amazonian Research (INPA)ManausBrazil
  16. 16.Department of Ecology and Evolutionary BiologyUniversity of Colorado-BoulderBoulderUSA
  17. 17.AECOMAnchorageUSA

Personalised recommendations